태풍은 지구 시스템 내의 해양-대기-육상 상호작용을 일으키는 매우 중요한 현상으로 특히 태풍의 특성 인자 중 하나인 풍속은 중심 기압, 이동 경로, 해수면 온도 등의 매개변수에 의해 복잡하게 변화하여 실제 관측 자료를 기반으 로 이해하는 것이 중요하다. 2015 개정 교육과정 기반 중등학교 교과서에서 태풍 풍속은 본문 내용 및 삽화의 형태로 제시되고 있어 풍속에 대한 심층적 이해가 가능한 탐구활동이 무엇보다 필요한 실정이다. 본 연구에서는 교수-학습 과 정에서 간단한 조작만으로도 태풍의 풍속을 이해할 수 있도록 그래픽 사용자 인터페이스(GUI)를 기반으로 한 데이터 시각화 프로그램을 개발하였다. 2023년 발생한 태풍 마와르, 구촐, 볼라벤의 천리안 위성 2 A호 RGB (Red-Green-Blue) 영상 자료를 입력 자료로 활용하였다. 태풍 주변의 구름 이동 좌표를 입력하여 태풍의 풍속을 산출하고 태풍 중심 기 압, 폭풍 반경, 최대 풍속 등의 매개 변수를 입력하여 태풍 풍속 분포를 시각화 할 수 있도록 설계하였다. 본 연구에서 개발된 GUI 기반 프로그램은 천리안 위성 2 A호로 관측 가능한 태풍에 대해 오류 없이 적용 가능하며 교과서의 시공 간적 한계를 벗어난 실제 관측 자료 기반의 과학탐구활동이 가능하다. 학생과 교사는 별도의 유료 프로그램 및 전문적 인 코딩 지식이 없어도 실제 관측 자료를 수집, 처리, 분석, 시각화하는 과정을 경험할 수 있으며, 이를 통해 미래 정보 화 사회에서의 필수 역량인 디지털 소양을 함양시킬 수 있을 것으로 기대된다.
이 연구는 위성사진을 활용하여 건설지점의 기대풍속을 예측하기 위한 인공신경망 방법론을 제안한다. 제안된 방법은 기존 의 엔지니어의 판단을 대체하여, Auto-Encoder를 사용해 지형적 특성을 정량화하고, 이를 바탕으로 대상지점과 유사한 지역의 관측소 풍속 데이터를 선형 조합해 기대 풍속을 예측한다. 또한, 머신러닝과 인공신경망을 활용한 종단간 풍속 예측 모델을 제안하고, 성능을 비교 분석하였다. 그 결과 관측소의 풍속 데이터의 선형 조합보다는 종단간 모델을 구성하는 방법이 더 높은 정확도를 보였으며, 특히 Graph Neural Network (GNN)이 Multi-Layer Perceptron (MLP)에 비해 상당히 우수한 예측 성능을 나타내었다.
해수의 탁도는 수중의 부유 물질이나 생물에 의해 혼탁해지는 정도를 정량적으로 나타낸 변수로 연안 환경을 이해하는 데 중요한 해양 변수이다. 한반도의 서해안은 얕은 수심, 조류, 하천 유래 부유 퇴적물의 영향으로 광학적으로 강한 시공간 변동성을 가지고 있어서 인공위성 자료를 활용한 탁도 산출은 해양학적으로 다양한 활용 가능성을 가 진다. 본 연구에서는 경기만을 연구 해역으로 설정하고, 해수의 탁도 산출 알고리즘 개발을 위하여 2018년부터 2023년 7월까지 해양환경공단의 해양수질자동측정망 기반 현장 관측 탁도 자료와 Sentinel-2 인공위성의 MSI (Multi-Spectral Instrument) Level-2 자료를 사용하여 위성-현장 관측치 사이의 일치점 데이터베이스를 생산하였다. 이전의 다양한 탁도 산출식을 조사하여 정확도를 상호 비교하였고 경기만 해역에서 최적 파장대를 조사하고 분석하였다. 그 결과 녹색 밴드 (560 nm)를 기반으로 한 탁도 산출식이 0.08 NTU의 상대적으로 작은 평균 제곱근 오차를 보였다. 인공위성 광학 자료 를 기반으로 산출된 탁도는 해수의 광학적 특성과 연안 환경의 변동성을 이해하고 다양한 해상 활동에 도움을 줄 수 있을 것으로 기대된다.
This research introduced a command-filtered backstepping control of mirror system to maintain laser communication between satellite and ground station. This requires a 2 degree of freedom gimbal mirror system using DC motors for target acquisition, pointing, and tracking (APT) system. This APT system is used for laser communication between satellite and ground stations. To track these desired angles, we have to control DC motors using introduced command-filtered backstepping controller (CFBSC) with disturbance. Command filtered backstepping controller has second order filter instead differentiation for simple and fast calculation. Introduced command-filtered backstepping control gives a smooth control signal for intermediate states. Simulation results verify that CFBSC outperforms SMC in terms of tracking error and disturbance rejection.
해수 속의 용존 유기·무기물과 플랑크톤 등의 상호 작용은 해수의 색과 광학적 특성을 결정한다. 동중국해에 위치한 이어도 해양과학기지(I-ORS) 주변의 해역은 서쪽으로 양자강 저염수, 남쪽으로 대마 난류에 영향을 받아 한반도 주변의 해수 순환과 광특성 변동 연구에 적합하다. 본 연구에서는 MODIS/Aqua로 관측한 위성 원격 반사도와 NOMAD 실측 원격 반사도를 이용하여 2016년 1월부터 2020년 12월까지 I-ORS 주변의 해수의 원격반사도를 스펙트 럼 특성에 따라 23가지의 유형으로 분류하였으며, 이어도 해양 과학기지 주변 해역(d ≤ 10 km)의 위성 일치점 자료 59,532개를 이용하여 연구 해역 수형의 계절 변동 특성을 제시하였다. 각 관측 지점에서의 원격 반사도 스펙트럼은 분 광 각도법을 이용하여 기준 스펙트럼과의 유사도를 비교함으로써 가장 근접한 기준 수형으로 분류 하였으며 분광 유사 도가 10o 이내일 때만 유의미하다고 판단하였다. 연구 기간내 I-ORS 주변 해역에서는 상대적으로 맑은 해역에서 잘 나 타나는 수형이 50% 이상으로 가장 빈번하게 관측되었다. 계절별 수형의 도수분포에서 여름과 겨울의 분포 양상이 다르 게 나타났고, 특히 여름에는 맑은 해수에서 주로 나타나는 7 이하의 수형이 주로 출현한 반면에 겨울에는 전체 4% 미 만으로 존재하였다. I-ORS 주변을 비롯한 동중국해의 수형의 공간 분포 특성을 고려할 때 I-ORS는 해수 수형의 전이 대에 위치한 것으로 판단된다. 본 연구는 한반도 연안에서의 수형 변동을 분석함으로써 해수의 광학 특성 이해을 이해 하고 인공위성 해색 변수의 정확도 향상을 위한 토대 마련에 기여할 것으로 기대된다.
해상풍은 해양의 표층 해류 및 순환, 혼합층, 열속의 변화를 주도하며 해양-대기 상호작용을 이해할 수 있는 중요한 변수이다. 인공위성의 발달에 따라 산란계 관측 자료를 기반으로 산출한 해상풍은 여러 목적으로 광범위하게 사용 되어 왔다. 한반도 연안과 같은 복잡한 해양 환경에서 산란계 관측 해상풍은 해양 및 대기 현상 이해에 중요한 요소이다. 따라서 위성 해상풍의 정확도 검증 결과가 다양한 활용을 위하여 중요하게 활용될 수 있다. 본 연구에서는 대표적인 산란계인 MetOp-A/B (METeorological OPerational satellite-A/B)에 탑재된 ASCAT (Advanced SCATterometer) 해상풍 자료를 한반도 주변의 16개 지점에서 2020년 1월부터 12월까지 실측된 해양기상부이 해상풍 자료와 비교하여 해상풍의 정확도를 검증하였다. 해수면으로부터 4-5 m 고도에서 관측된 부이 바람은 LKB (Liu-Katsaros-Businger) 모델을 활용하여 10 m의 중립 바람으로 변환하였다. 일치점 생산 과정 결과 MetOp-A와 MetOp-B에 대하여 5,544개와 10,051 개의 일치점을 만들었다. 각 위성 해상풍 풍속의 평균제곱근오차는 1.36 m s−1와 1.28 m s−1, 편차는 0.44 m s−1와 0.65 m s−1로 나타났다. 산란계의 풍향은 MetOp-A와 MetOp-B에서 각각 –8.03 o와 –6.97 o의 음의 편차와 32.46 o와 36.06 o 의 평균제곱근오차를 보였다. 이러한 오차들은 해양-대기 경계층 내의 성층과 역학과 관련된 것으로 추정된다. 한반도 주변 해역에서 산란계 해상풍은 특히 풍속이 약한 구간에서 실측 풍속보다 과대추정되었다. 또한 연안으로부터의 거리가 가까워질수록 오차가 증폭되는 특성이 나타났다. 본 연구 결과는 산란계 해상풍 자료를 이용하는 해양-대기 상호작 용 및 태풍 연구와 같은 한반도 연안 해역의 예측 모델 발전에 기여할 수 있을 것으로 기대된다.
급격한 기후 변화와 해양 온난화에 의해 지난 수십 년 동안 파고의 변동성이 증가하였다. 상위 1% (또는 5%) 파고와 같은 극한 파고는 국지적인 해역 뿐만 아니라 전 지구 대양에서도 평균 파고에 비해 현저하게 증가하였다. 1991년부터 인공위성 고도계를 활용하여 유의파고를 지속적으로 관측하고 있으며 통계적 기법을 기반으로 100년 빈도 유의파고를 추정하기에 비교적 충분한 자료가 축적되었다. 이어도 해양과학기지에서 유의파고 극값을 추정하기 위하여 2005년부터 2016년까지 위성 고도계 자료를 활용하였다. 대표적인 극값 분석 방법인 Initial distribution Method (IDM) 와 Peak over Threshold (PoT)를 위성 도고계 유의파고 관측 자료에 적용하고 이어도 해양과학기지에서 관측된 실측 자료와 비교하였다. 이어도 해양과학기 관측 자료에 IDM과 PoT 기법을 적용하여 추정된 100년 빈도 유의파고는 각각 8.17 m와 14.11 m이며, 인공위성 고도계 관측 자료를 활용하였을 때는 각각 9.21 m와 16.49 m이었다. 관측 최대값과의 비교 분석에서 IDM을 활용한 분석은 유의파고 극값을 과소추정 하는 경향을 보였다. 이는 IDM 보다 PoT 기법이 유 의파고의 극값을 적절하게 추정하고 있음을 의미한다. PoT 기법의 우수성은 높은 유의파고가 발생하는 태풍의 영향을 받는 이어도 해양과학기지 실측 자료를 활용한 결과에서도 증명되었다. 또한 PoT 기법으로 추정된 유의파고 극값의 안정성은 고도계 자료의 감소에 따라 저하될 수 있음을 확인하였다. 인공위성 고도계 자료를 활용하여 유의파고 극값 추정시 발생할 수 있는 한계점과 인공위성 자료를 검증할 수 있는 자료로써 이어도 해양과학기지 관측 자료의 중요성에 대하여 논의하였다.
염분은 해양의 밀도를 결정하는 중요한 변수이자 전지구 물의 순환을 나타내는 주요 인자 중 하나이다. 해상 염분 관측은 선박을 이용한 현장조사, Argo 플로트, 부이를 통한 조사가 주로 수행되어 왔다. 2009년 염분관측 인공위 성이 발사한 이래로, 위성 염분자료를 이용하여 전 지구 해역에서 표층 염분 관측이 가능해졌다. 그러나 위성 염분자료는 다양한 오차를 포함하기 때문에 연구 자료로 활용하기에 앞서 정확도 검증과정이 필요하다. 따라서 본 연구에서는 2015년 4월부터 2020년 8월까지 Soil Moisture Active Passive (SMAP) 위성 염분자료와 이어도 해양과학기지에서 제공하는 실측 염분자료 간의 정확도 및 오차특성을 비교 분석하였다. 총 314개의 일치점을 생산하였으며, 염분의 평균제 곱근오차 및 평균편차는 각각 1.79, 0.91 psu로 제시되었다. 전반적으로 위성 염분이 실측 염분보다 과대추정 되는 것으로 나타났다. 위성 염분의 오차는 계절, 표층 수온, 풍속과 같은 다양한 해양 환경적 요인에 의존성을 보였다. 여름철 위성 염분과 실측 염분의 차이는 0.18 psu 이하로 저수온보다는 고수온에서 위성 염분의 정확도가 증가하였다. 이는 센서의 민감도에 따른 결과였다. 마찬가지로 5 m s−1 이상 풍속 조건에서 오차가 줄어들었다. 본 연구결과는 연안에서 위성 염분자료를 활용할 경우에는 특정한 연구 목적에 적합한지 확인하여 제한적으로 사용하여야 함을 제시한다.
본 연구에서는 인공위성 해수면온도 편차(Sea Surface Temperature Anomaly, SSTA)를 이용하여 한반도 연안해역의 고수온 해역을 추출하고, 국립수산과학원의 고수온속보 발령 문서와 비교하였다. 일일 SSTA 이미지를 이용하여 임계값을 적용하는 고수온 탐지 알고리즘을 제안하였으며, 고수온 주의보는 2℃ 이상, 경보는 3℃ 이상인 것으로 가정하였다. 2017~2018년 7~9월의 일평균 SST를 기반으로 한 편차자료를 사용하였으며, 고수온속보에 사용되는 지역을 대상으로 위성기반 탐지 결과를 9개 영역으로 구분하고 비교하였다. 해역별 고수온 발생 횟수 비교 결과, 수온 관측 부이가 고르게 분포한 남해 연안은 고수온속보와 위성 탐지 횟수가 유사하게 나타났다. 반면에 다른 해역은 위성 탐지 횟수가 약 2배 이상 많았으며, 이는 고수온속보 발령이 해역의 일부 위치 수온만을 고려하기 때문인 것으로 판단된다. 본 연구 결과는 향후 위성기반 연안해역 고·저수온 모니터링 체계 개발에 활용하고자 한다.
지구온난화와 급속한 기후 변화는 북서 태평양 내 태풍의 특성에 오랫동안 영향을 미쳤고, 이로 인해 한반도 연안에서 치명적인 재해가 증가하고 있다. 마이크로파 센서의 일종인 Synthetic Aperature Radar (SAR)는 위성 광학 및 적외선 센서로는 바람을 구할 수 없는, 흐린 대기 조건인 태풍 주위에서 고해상도 바람장을 생산할 수 있다. SAR 자료 로부터 해상풍을 산출하기 위한 Geophysical Model Functions (GMFs)에는 풍향 입력이 필수적이며, 이는 태풍 중심을 정확히 추정하는 것에 기반해야 한다. 본 연구는 태풍 중심 탐지 방법의 문제점을 개선하고 이를 해상풍 산출에 반영하기 위하여, Sentinel-1A 영상을 이용해 태풍 중심을 추정하였다. 그 결과는 한국 및 일본 기상청이 제공한 태풍 경로 자료와 비교하여 검증하였고, Himawari-8 위성의 적외 영상도 활용하여 검증하였다. 태풍의 초기 중심 위치는 VH 편파를 이용해 설정하여 오차의 발생 가능성을 줄였다. 탐지된 중심은 한국 및 일본 기상청에서 제공하는 4개 태풍의 경로 자료와 평균 23.76 km의 차이를 보였다. Himawari-8 위성에서 추정된 태풍 중심에 비교했을 때 결과는 육지 근처에 위치하면서 58.73 km의 큰 차이를 보인 한 태풍을 제외하고는 평균 11.80 km의 공간 변이를 보였다. 이는 고해상도 SAR 영상이 태풍 중심을 추정하고 태풍 주위 해상풍 산출에 활용될 수 있음을 시사한다.
해상풍은 해양 현상을 이해하고, 지구 온난화에 의한 지구 환경의 변화를 분석하기 위한 필수 요소이다. 전세계 연구 기관은 해상풍을 정확하고 지속적으로 관측하기 위해 산란계(scatterometer)를 개발하여 운영해오고 있으며, 정확도는 풍향이 ±20°, 풍속이 ±2 m s−1 안팎이다. 하지만, 산란계의 해상도는 12.5-25.0 km로, 해안선이 복잡하고 섬이 많은 한반도 근해에서는 자료의 결측이 빈번하게 발생하여 활용도가 감소한다. 그에 반해, Synthetic Aperture Radar (SAR, 합성개구레이더)는 마이크로파를 활용하는 전천후 센서로, 1 km 이하의 고해상도 해상풍이 산출이 가능하여 산란계의 단점 보완이 가능하다. 본 연구에서는 일반적으로 활용되는 SAR 자료 기반 해상풍 산출 알고리즘인 Geophysical Model Function (GMF, 지구 물리 모델 함수)를 밴드별로 분류하여 조사하였다. 상대 풍향, 입사각, 풍속에 따른 후방산 란계수를 L-band Model (LMOD, L 밴드 모델), C-band Model (CMOD, C 밴드 모델), X-band Model (XMOD, X 밴 드 모델)에 적용하여 모의하였고, 각 GMF의 특성을 분석하였다. 이러한 GMF를 SAR 탑재 인공위성 자료에 적용하여 산출한 해상풍의 정확도 검증 연구에 대해 조사하였다. SAR 자료 기반 해상풍의 정확도는 영상 관측 모드, 적용한 GMF의 종류, 정확도 비교 기준 자료, SAR 자료 전처리 방법, 상대 풍향 정보 산출 방법 등에 따라 변하는 것으로 나타났다. 본 연구를 통해 국내 연구자들의 SAR 자료 기반 해상풍 산출 방법에 대한 접근성이 향상되고, 고해상도 해상풍 자료를 활용한 한반도 근해 분석에 이바지할 것으로 기대된다.
국제 해상교통량 및 물동량이 증가함에 따라 한반도 주변해역의 선박유동량도 늘어나고 있으며 이에 따라 크고 작은 항구가 위치하고 있는 남해에서의 해양 사고도 꾸준히 발생하고 있다. 특히 선박간의 충돌 및 침몰 사고는 인적 및 물적 피해뿐만 아니라 해양환경오염을 유발하기 때문에 광역의 범위를 고해상도로 볼 수 있는 인공위성을 통한 신속한 선박탐지가 필요하다. 본 연구에서는 광학 인공위성 아리랑 2호 관측자료를 활용하여 광양만 인근해역의 각 채널 별 반사도 값을 비교 분석하여 새로운 선박탐지지수를 제시하였다. 선박 분류를 위해 그 선박탐지지수의 역치를 0.1로 설정하였고, RGB 합성영상과 비교하였을 때 대다수의 선박을 탐지하였음을 보여주었다. 연구해역에 포함되어 있는 큰 규모의 선박을 선정 후, 선박 주변의 공간적 반사도 분포를 분석하였다. 그 결과 선박 북서방향에 위치한 균일한 형태의 선박그림자를 확인할 수 있었다. 이는 태양의 위치가 남동방향에 위치하고 있음을 나타내고 있으며, 실제 위성영상이 촬영된 시기의 방위각은 144.80o로 영상내의 그림자의 위치를 통해 태양의 방위각을 유추할 수 있다. 그림자의 반사도는 주변 바다 및 선박에 비해 낮은 0.005 값을 나타냈고, 선수 및 선미에 따라 높이차가 달라짐을 보였다. 이는 선박의 갑판 및 구조물의 높이를 반영한 것으로 판단된다. 본 연구 결과는 연안 해상사고 발생 시 실종선박 수색기술에 고해상도 광학 인공위성 영상이 활용될 수 있음에 의의가 있다.
해상풍은 장기간동안 인공위성 산란계와 마이크로파 복사계를 주로 활용하여 관측되어왔다. 반면 위성 고도계산출 풍속 자료의 중요성은 산란계의 탁월한 해상풍 관측 성능으로 인해 거의 부각되지 않았다. 인공위성 고도계 풍속 자료는 해수면고도를 산출하기 위한 해상상태편차(sea state bias) 보정항의 입력 자료로서 활용됨에 따라 높은 정확도가 요구된다. 본 연구에서는 인공위성 고도계(GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) 풍속을 검증하고 오차 특성을 분석하기 위하여 이어도 해양과학기지와 마라도, 외연도 해양기상부이의 풍속 자료를 활용하여 2007년 12월부터 2016년 5월까지 총 1504개의 일치점 자료를 생성하였다. 해양실측 풍속에 대한 고도계 풍속은 1.59 m s−1의 평균 제곱근오차와 −0.35 m s−1의 음의 편차를 보였다. 해양실측 풍속에 대한 고도계 해상풍 오차를 분석한 결과 고도계 해상풍은 풍속이 약할 때 과대추정되며 풍속이 강할 때 과소추정되는 특징을 보였다. 위성-실측 자료 간의 거리에 따른 고도계 풍속 오차를 분석한 결과 구간별 오차의 최댓값과 최솟값의 차는 거리에 따라 점차 증가하였다. 고도계 풍속의 정확도 향상을 위하여 분석된 오차 특성을 기반으로 보정식을 유도한 후 고도계 풍속을 보정하였다. 보정 전후의 풍속 자료를 활용하여 해상상태편차를 산출하였으며 Jason-1의 해상상태편차에 대한 해상풍 오차 보정의 영향을 확인하였다.
In the satellite operation phase, a ground station should continuously monitor the status of the satellite and sends out a tasking order, and a satellite should transmit data acquired in the space to the Earth. Therefore, the communication between the satellites and the ground stations is essential. However, a satellite and a ground station located in a specific region on Earth can be connected for a limited time because the satellite is continuously orbiting the Earth, and the communication between satellites and ground stations is only possible on a one-to-one basis. That is, one satellite can not communicate with plural ground stations, and one ground station can communicate with plural satellites concurrently. For such reasons, the efficiency of the communication schedule directly affects the utilization of the satellites. Thus, in this research, considering aforementioned unique situations of spacial communication, the mixed integer programming (MIP) model for the optimal communication planning between multiple satellites and multiple ground stations (MS-MG) is proposed. Furthermore, some numerical experiments are performed to verify and validate the mathematical model. The practical example for them is constructed based on the information of existing satellites and ground stations. The communicable time slots between them were obtained by STK (System Tool Kit), which is a well known professional software for space flight simulation. In the MIP model for the MS-MG problems, the objective function is also considered the minimization of communication cost, and ILOG CPLEX software searches the optimal schedule. Furthermore, it is confirmed that this study can be applied to the location selection of the ground stations.