도심지의 도로포장은 버스 등 중차량 교통하중과 포장 유지보수 시기가 지나 급속히 진행 되고 있는 포 장표면의 노후화뿐만 아니라 도로하부 시설물 보수를 위한 잦은 굴착복구가 진행되고 있다. 이로 인해 포 장체의 구조적 지지력이 감소하여 전형적인 도심지형 도로파손인 포트홀, 균열, 침하 및 소성변형이 급증 하고 있다. 또한 빈번히 발생하는 도심지의 도로파손 유지보수로 적지 않은 예산이 소요되고 있기 때문에 효율적인 유지보수를 통한 공용성 확보가 절실히 요구된다. 따라서 본 연구에서는 도로포장의 표면상태와 포장층의 구조적 지지력과의 연관성을 파악하여 효과적인 유지보수 방안을 제시하고자 한다. 우선 도로포 장 하부상태와 표면상태 분석결과를 도심지 도로파손 원인 분석 및 대응방안 수립 근거자료로 활용하기 위 해서 서울시의 23개 장기공용성구간(Long Term Performance Pavement)중 공용기간이 5년 경과된 구간 을 선정하였다. 선정된 대상구간의 포장 표면상태 조사(Visual Inspection) 결과인 Rutting, Crack, IRI 및 그에 기반한 SPI지수와 FWD시험으로 부터 산출된 잔존수명과의 비교 분석을 수행하였다. 특히, 표면 조사와 동일구간에 현장코어를 통해 얻어진 아스팔트층 두께와 30cm로 가정한 보조기층 두께 및 대표온 도 20℃를 이용, 역산프로그램을 사용하여 포장층의 탄성계수와 잔손수명을 추정하였다. 대상 구간의 잔 존수명과 도로포장 표면상태와의 관계를 도출하기 위해 지지력 기반 우선순위와 표면상태 기반 우선순위 를 비교하였다. 그 결과 표면상태와 지지력의 상관관계는 다음 그림1에 나타난 바와 같이 Rutting, Crack 에 대한 R-square 값이 0.65이상으로 상관성이 비교적 높은 수준이며 IRI(종단평탄성)는 상관성이 가장 낮았다. 이는 포장층이 지지력이 도로 노면의 평탄성에 미치는 영향이 상대적으로 적기 때문이며, 따라서 Rutting, Crack, IRI의 지수가 모두 포함된 SPI는 상대적으로 낮게 나타난 것으로 판단된다.
따라서 포장 표면상태를 나타낸 지수만을 고려하여 유지보수를 시행할 경우 포장층의 지지력이 충분하지 못한 경우에는 예상보다 빠른 시기에 혹은 동일 시기라도 심각한 상태의 포장손상이 나타날 가능성이 높다. Rutting과 Crack에 대한 지지력의 상관도를 볼 때 이미 진행된 도로파손의 유지보수시 표면상태 뿐만 아니 라 포장층 자체의 지지력을 함께 고려하여 유지보수를 시행하여야 향상된 공용성을 기대할 수 있다.
국내 고속도로의 교량은 2000년 이후 집중된 선형개량 및 신규 노선 증가 사업으로 10년 전과 비교하여 2배 이상 증가하였다. 이에 따라 유지관리 비용도 지속적으로 증가하고 있다. 현재 고속도로 유지관리 예산 비중이 가장 높은 항목은 아스팔트 교면 교량의 콘크리트 바닥판 열화에 의한 보강 부분이다. 2011년 고속도로 관리교량은 약 7,800여개에 도달한 시점에서 현재 방법으로는 향후 어느 정도 바닥판 보강 예산이 필요한지 어느 시기에 증액을 하여야되는지 명확하게 추정하기 어렵다. 본 연구에서는 신뢰도 분석 방법인 와이불 분포에 의한 생존 수명 예측 기법을 적용하여 현재 고속도로 아스팔트 계열의 교면 교량의 평균 수명을 추정하였고 이를 토대로 향후 예상 보강 비용을 추정하였다.
Depreciation accounting has as its main objective, the recovery of the original cost of plant investment less net salvage, over the estimated useful life of that plant. Accuracy of the whole life technique in meeting this objective depends entirely on the
본 연구에서는 다양한 아스팔트포장의 공용수명을 예측하기 위한 포장상태 평가의 사례를 제시하였다. ARAN(Automatic Road Analyzer)을 이용하여 균열 및 소성변형 감과 감전 포장의 표면파손 현황에 대한 조사를 실시하고 HPCI(Highway Pavement Condition Index)를 산정하였다. 포장 파손현황을 분석한 결과 가장 빈번한 형태의 파손은 Top-down 균열로 나타났다. FWD(Falling Weight Deflectometer)로부터 측정한 처짐데이터를 사용하여 포장의 탄성계수를 역산정하여 실내에서 구한 동탄성계수와 비교하였다. 그 결과를 역학적-경험적 방법과 AASHTO 93 설계법에 적용하여 포장의 지지력을 평가하였으며, 지지력은 설계수명 동안 충분한 것으로 평가되었다. 현재 포장의 주된 파손은 표층부의 Top-down 균열이므로 포장상태 평가로 계산된 HPCI와 기존 공용성 자료에 근거하여 포장의 잔존수명을 예측하였다. 포장상태 평가와 함께 포장의 조기파손 원인분석을 위해 대상구간의 코어 시편을 채취하여 공극률, 입도, 아스팔트 함량, 피로저항성 등의 물성을 측정하였다. 바인더를 태워 아스팔트 함량을 측정하는 방법은 현장시료의 경우 부정확한 것으로 나타났다. 실내시험결과 조기 균열이 발생한 가장 큰 이유는 다짐부족과 골재의 입도 부정확 등 시공시의 품질관리가 미흡한 것이 주된 원인으로 나타났다.
공항 콘크리트 포장은 설계기준을 역순으로 하거나, FWD 장비로부터 얻어진 탄성 계수를 근거로 포장체의 잔존수명을 추정하여 왔었다. 그러나 FWD로부터 얻어진 탄성계수 값은 역산 방법에 따라 변동성이 심하므로 잔존수명의 일관성이 결여된 한계가 있다. 또한 구조적 측면만 고려하여 포장의 상태를 평가하므로. 기능적 측면을 반영하지 못하는 한계가 있었다. 따라서 본 연구에서는 공항 콘크리트 포장의 잔존수명 산출에 있어서 구조적 측면 및 기능적 측면 모두를 고려하는 논리를 제시하였으며, 각 논리별 세부 절차별에 있어서의 기준 및 모델 적용을 제안하였다 구조적 잔존수명 추정 논리를 개선하기 위해 오래된 공항을 대상으로 하여 하중을 받은 구간과 받지 않은 구간에서의 잔존수명 추정 인자 선정을 위한 실험을 실시하였다. 그 결과 기존에 주로 사용되어 왔던 탄성계수보다는 하중전달효율이 잔존수명 추정 인자로 규명되었다. 새롭게 개발한 잔존수명 추정 논리 및 세부 모형들의 현장 적용성을 파악하기 위하며 오래된 공항 한 개소를 선정하였다. 새로운 논리에 따라 현장 실험 및 분석을 수행한 결과 실무에 적용하는데 무리가 없음을 알 수 있었다.
한국시설안전공단에서는 ‘시설물의 안전관리에 관한 특별법’에 따라 철근콘크리트 구조물의 안전점검 및 정밀안전진단을 실시하도록 제시하고 있다. 그러나 한국시설안전공단 안전점검 및 정밀안전진단 세부지침의 평가방법에서는 평가결과를 등급으로 제시하기 때문에 구조물의 잔존수명을 알 수 없으며 부등침하가 구조물의 잔존수명에 미치는 영향을 반영하지 못한다. 따라서, 이 연구에서는 부등침하의 영향이 반영된 구조물의 잔존수명 평가모델을 제시하고자 하였다. 부등침하와 각 변위의 상관관계를 나타내는 기존의 연구를 바탕으로 부재의 공칭강도에 부등침하의 영향을 반영시키기 위한 식을 제시하였으며, 실제 철근콘크리트 구조물의 현장데이터를 활용하여 부등침하가 구조물의 잔존수명에 미치는 영향을 분석하였다.
본 논문에서는 상수관로의 효율적인 유지 관리를 위해 상수도 기술진단에서 점수평가법으로 도출된 관망성능평가결과를 이용한 상수도 관로의 내구연수 및 잔존수명 산정 방법을 제시하였다. 본 연구에서 잔존수명은 ‘모델에 의해 추정된 매설 후 최적교체시기까지 경과년수’를 의미하는 ‘내구연수’와 매설 후 경과년수의 차이로 정의하였으며, 내구연수는 관망성능평가기준으로 제시된 노후관로 판정기준 점수에 도달하는 시점으로 정의하였다. 연구대상지역의 관망성능평가에 사용된 평가항목들과 노후도 점수를 상수도 관로의 잔존수명 추정을 위한 다중회귀모델의 변수로 사용하였다. 잔존수명의 산정에 필요한 내구연수를 추정하기 위하여 구축된 회귀모델에 독립변수로 사용된 노후도 점수를 나타내는 변수의 값으로 노후관로 판정기준 점수에 해당하는 값을 대입하였다. 개발된 회귀모델을 이용하여 연구대상지역 상수도 관로의 내구연수 및 잔존수명을 산정하였으며 그 결과를 지방공기업법에서 제시하고 있는 내용연수와 비교하여 분석하였다.
The demand of underground structure such as box culvert for electric power transmission is increasing more and more, and the service life extension of these structures is very important. Then, the service life due to carbonation at the cover depth was calculated by in situ information and the Monte Carlo simulation in a probabilistic way. Additionally, the accelerated carbonation test for the cracked beam specimen was executed and the crack effect owing to the carbonation process on the service life of box culvert was numerically investigated via Monte Carlo simulation based on the experimental results.
The remaining service life (RSL) of the concrete structures built in the past has become a social issue with the concerns of the sustainable construction. In the previous studies, some simple methods for estimation of the RSL of the concrete structures were proposed. However, most of the existing studies on the RSL evaluation method have focussed on the investigation of the single deteriorating factor. In this study, the combination effect of various factors related with durability performances of the concrete structure, such as concrete carbonation and chloride penetration were considered by utilizing the fuzzy and reliability theory.
In this study, based on the field and laboratory experiments results of underground box culverts, a residual service life was numerically estimated via the statistical analysis and Monte Carlo simulation.
박스형 전력구와 같은 지하구조물의 건설은 점점 증가하고 있는 추세이며, 지상구조물에 비해 보수 및 재시공이 어려운 지하구조물의 수명 연장은 매우 중요한 문제로 대두되고 있다. 콘크리트 구조물에서 이산화탄소에 노출된 환경에서 발생하는 탄산화는 콘크리트 내부의 철근을 부식시켜 수명을 저하시키는 요인이 된다. 이 연구에서는 도심지의 두 박스형 전력구에 대한 탄산화 깊이를 측정하여 탄산화에 의한 내구성을 평가하고, 탄산화 측정결과를 바탕으로 몬테카를로 시뮬레이션 기법을 통해 철근의 부식시기를 예측하였다. 탄산화에 의한 기존 도심지의 두 박스형 전력구의 사용수명은 250년 이상으로 예측되었다.