Lithium-ion batteries (LIBs) are widely used as essential power sources for electric vehicles and energy storage systems. Among various cathode materials, Li[Ni0.9Mn0.1]O2 (NM90) has gained significant attention for enhancing the performance of LIBs due to its high energy density and nontoxicity. However, increasing the nickel content introduces challenges, including structural instability and cation mixing. To address these issues, we propose a surface coating strategy using nitrogendoped carbon quantum dots (NCQDs). NCQDs provide high electrical conductivity and electrochemically active sites, so the NCQDs coating effectively enhanced both structural stability and electrical/ionic conductivity. The NCQDs were synthesized via a hydrothermal method, and NM90 were synthesized by co-precipitation. The fabricated NCQD/NM_5 electrode exhibited superior electrochemical properties, including a high initial capacity of 189.6 mAh/g, excellent rate performance, and an outstanding capacity retention of 81.5 % after 200 cycles in 1C. These superior results demonstrate that surface modification using the NCQDs strategy for Li[Ni0.9Mn0.1]O2 cathode materials will contribute to the further development of cycle stability and ultrafast performance in energy storage systems.
고체전해질은 높은 에너지 밀도와 안전성을 갖춘 차세대 리튬이온전지에 꼭 필요한 핵심 요소다. 이러한 고체전 해질의 제작을 위해서 기존 고체전해질의 낮은 이온전도도와 높은 계면저항 문제를 해결해야 한다. 본 연구에서는 강화된 이 온 전도성과 계면 안정성을 지닌 PVDF-HFP 고분자에 분산된 Li7La3Zr2O12 (LLZO) 나노와이어 복합체를 기반으로 하는 새 로운 전해질(PVDF-HFP/LLZO/SN, PHLS membrane)을 제안한다. PHLS에 용매 열압착(Sovlent heat press, SHP)을 통해 계 면 저항과 내부 공극이 감소된 PHLS-(SHP)는 30°C에서 2.06 × 10-4 S/cm의 높은 이온 전도도, 4.5 V (vs. Li/Li+)의 넓은 전 기화학적 전위 창, 리튬 금속과 전해질 사이의 안정된 계면 안정성을 나타냈다. 0.2 mA/cm2에서 수행된 Li 대칭 셀을 사용한 전기화학적 테스트에서 150 시간 이상 안정성을 유지하는 것으로 확인되었으며, 이는 당사의 복합 기반 고체 전해질을 활용 하여 전기화학적 성능이 향상되었음을 시사한다.
In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.
In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.
Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.
In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
리튬 금속 기반 전극의 높은 용량에도 불구하고, 제어가 어려운 덴드라이트 성장은 낮은 쿨롱 효율, 안전 문제를 야기해, 리튬금속 배터리의 상용화를 제한한다. 본 연구에서는 압전 복합체인 BaTiO3/PVDF (BTO@PVDF) 기반 보호층을 리튬금속에 코팅, 덴드라이트에 의한 부피팽창으로 발생한 변형을 분극을 이용하여, 리튬 금속 전극의 안정성 및 성능을 향상 하고자 한다. 이를 통해, 균일한 리튬이온의 증착이 가능해졌으며, BTO@PVDF 전극은 100 사이클 동안 약 98.1% 이상의 쿨 롱 효율을 나타내었다. 또한, CV를 통해 향상된 리튬이온의 확산계수(DLi+) 증가를 보였으며, 본 연구에서 제시된 전략은 리 튬 금속 전극의 성능 향상에 새로운 길을 나타내준다.
Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.
Flexible zinc-air batteries have many merits, including low cost, high safety, environmentally friendliness applicability, etc. One of the key factors to improve the performance of flexible zinc-air batteries is to use a gel electrolyte. In this study, gel electrolytes were synthesized from potato, sweet potato, and corn starch. In a comparison of each starch, the corn starch-based gel electrolyte showed the highest discharge capacity of 12.41 mAh/cm2 in 20 mA and 6.47 mAh/cm2 in 30 mA. It also delivered a higher specific discharge capacity of 7.06 mAh/cm2 than the other materials after 100° bending. In addition, the electrochemical impedance spectroscopy (EIS) was analyzed to calculate the ionic conductivity. The potato, sweet potato, and corn starch-based gel electrolytes showed electrolyte resistances (Re) of 0.306, 0.298, and 0.207 Ω, respectively. In addition, the corn starch-based gel electrolyte delivered the highest ionic conductivity of 0.121 S cm-1 among the other gel electrolytes. Thus, the corn starch-based gel electrolyte was verified to improve the performance of flexible zinc-air batteries