Dry Process(natural drying, hot-air drying, oil fry drying), optimized mixture ratio and the condition of carbonization was carried out in order to improve the product durability develop eco-friendly solid fuel mixing food waste and paper sludge. As a result of the experiment, oil fry drying process was the fastest method for drying food waste and paper sludge mixture that contains 80% water inside, and the optimized mixture ratio to minimize the generating concentration of chlorine gas against caloric value of mixture ratio was 7:3. Additionally proper temperature of product carbonization was about 200℃ and shown increasing product durability through the carbonization. Therefore, the pelletized solid fuel be shaped diameter around 0.5cm, length 2cm under which was pulverized and molded using 7:3 mixture of food waste, and paper sludge was the eco-friendly solid fuel possible to be industrialized which is consist of chlorine concentration of below 2.0wt% and the lowest caloric value of over 5,000kcal/kg. In conclusion, this developing manufacturing process of the solid fuel can be interpreted to contribute alternative energy development in accordance with low carbon and green growth era.
본 시험은 폐기되고 있는 제지슬러지의 자원 재활용을 위한 육묘용 상토로서 이용 가능성을 알아보기 위해 수행되었다. 상업 용토 토실이를 대조구로 하여 제지슬러지와 토실이의 혼합 상토 (1:1, v:v), 그리 고 제지 슬러지 단용 상토를 처리로 하였다. 토마토의 육묘 결과, 제지슬러지 혼합 상토에서의 생육은 토실이 상토와 비교하여 초장, 근장, 생체중과 건물중 등에서 그 차이 없었다. 반면, 제지슬러지 단용 상토에서의 생육은 현저히 억제되는 것으로 나타났다. 이러한 결과는 오이묘의 생육결과에서도 반영 되 어 제지슬러지 단용 상토의 오이묘 생육은 현저히 억제되었다. 본 시험의 결과, 제지슬러지의 자원 재활 용을 높이기 위해서는 미 가공 제지슬러지의 높은 pH와 EC의 안정화, 그리고 Zn의 함량을 낮추는 등의 처리가 선행 되어야 할 것으로 판단된다.
We used a conventional activated sludge process to treat a paper wastewater, and then the effluent was treated with an ozone oxidation process as advanced process to remove non-degradable materials. It was found that the removal efficiency rates of the organic matter has been rapidly increased initially, and then it was almost constant after this period. The concentration of ozone should be recommended to maintain approximately 8.3 mg/L during this operation to keep the CODmn value below 100 mg/L and ozone contact time longer than 60 min.
This research was performed to evaluate heavy metal leaching characteristics of the sludge from paper mill process with sintering temperature. Heavy metal leaching of the sludge was characterized with Korean Leaching Test and Toxicity Characteristic Leaching Procedure. The test sludge was composed of 70.72% of moisture, 9.5% of volatile solids and 9.76% of fixed solids. As a result of XRF analysis, Fe was the highest inorganic element in approximately 83%, which implies the recycling possibility of the sludge in reuse of Fenton chemicals and artificial lightweight aggregate. Leaching of heavy metals from sintered sludge was lower than the dry ones. However, there was no significant difference in leaching characteristics between the sludges sintered at 350℃ and 650℃. Zn and Fe were leached more greatly in TCLP and KLT methods respectively.
In the present work, the choice of the nano carbon black and optimum mixed ratio and effectiveness of the mixed carbon black to get a raw data for a manufacturing method of conductive complex board. Optimum mixed ratio of paper sludge & water was 1 : 2.5 for reformations. HB-41-Y was cheaper than Super-P with the single carbon black. Also electric conductivity of HB-41-Y(6.406×10-2 Ωcm-1) was about 6.5 times higher than Super-P(9.741×10-3 Ωcm-1) at 20 wt% carbon black. This time optimum mixture ratio of the paper sludge and the carbon black to be about 15 wt%, optimum mixed ratio HB-41Y and Graphite about 3:1 and its electric conductivity was 5.824×10-2 Ωcm-1.
In this study, leaching and content tests of hazardous substances were analyzed to evaluate their recyclability to paper sludge and paperboard products. These findings were compared with standard controlled waste. In addition, the stability of these products was examined with respect to the recommended standards for heavy metal content in packaging materials. In the leaching test results, no regulated items were detected. Upon examining the stability of paperboard products, it was detected within the standard of most samples. Paper sludge usage accounts for only about 10% of paperboard raw materials. Therefore, harmful substances in paper sludge is not a problem, Leaching and content tests of harmful substances in the antifoaming agent used were investigated within the limits of all items. The pH of the paper sludge corrugated cardboard, and antifoaming agent was 7.49, 7.21, and 7.87, respectively. Therefore, these wastes did not account for the corrosiveness. In addition, there were no hazardous characteristics found for leaching, because all specified waste standards were satisfied.
아스팔트 포장이 최초로 시공된 이후로 눈부신 경제발전과 함께 도로의 신설, 확장 및 포장과 동시에 기존 포장도로의 유지보수는 국가건설 산업의 중요한 부분이 되었다. 근래에는 교통량의 증가 및 교통하중의 증가로 인하여 아스팔트 포장은 설계수명을 다하지 못하고 급속히 파손되는 결과를 가져와 폐아스콘의 발생량이 기하급수적으로 증가하고 있는 추세에 있다. 천연자원 고갈 및 훼손에 따른 문제 해결을 위하여 최근 「건설폐기물의 재활용촉진에 관한 법률」 제38조제3항에 따른 ‘순환골재의무사용건설공사의 순환골재 사용용도 및 의무사용량 등에 관한 고시’ (환경부 고시 제2009-138호, 국토해양부 고시 제2009-713호, 2009.8.25)에 따라 1km 이상의 도로를 건설할 경우 반드시 재생아스콘을 사용해야한다. 환경부는 공공기관이 발주하는 건설공사에 사용하는 의무사용 비율을 현재 15%에서 40%로 높여갈 계획에 있다. 이러한 정부의 정책에도 불구하고 재생아스콘의 사용 실적이 저조한 이유에는 그 기능성 및 가격경쟁력의 문제가 크다고 할 수 있고 재생아스콘의 사용 공법에는 포장 시 가열의 유무에 따라 가열재생아스콘과 상온순환아스콘으로 구분되어 진다. 환경부하저감과 자원절약의 의미로 시행되는 재생아스콘은 가열시 발생되는 이산화탄소 및 에너지 소비측면에서 적합하지 않으며, 특히 가격 경쟁성에서 시장성이 떨어진다. 따라서 상온순환아스콘의 확대보급을 위한 기술개발이 필요하며 이에 본 연구는 최근 저탄소 녹색생산 및 경제성 향상을 위한 자원재활용과 고부가성을 요구하는 시멘트 업계의 동향을 고려하여 무기계 순환자원인 제지슬러지, 고로슬래그 및 탈황석고 등의 자원을 재활용하여 시멘트를 전혀 사용하지 않고 고온의 소성과정 없이 상온에서 제조가 가능한 상온순환아스콘 채움재 개발과 그 특성평가를 진행하였다. 본 연구는 KS L 5105에 명시된 시험방법으로 실험을 진행하였으며 각각의 배합에 따른 유동성, 압축강도, 기타 물성 등을 시험하였으며 제지애시를 혼입한 채움재의 물성을 확인하였다.
산업이 가속화됨에 따라 범지구적 환경문제인 지구온난화에 대한 관심이 나날로 증가하고 있다. 온난화의 원인으로는 온실가스로 밝혀졌으며, 그 중 이산화탄소는 산업 활동에 의해 대량으로 배출되므로 온난화의 주범으로 꼽히고 있다. 광물탄산화 기술은 칼슘과 마그네슘 등의 금속산화물과 이산화탄소를 반응시켜 안정하게 저장하는 기술로 천연광물, 알칼리성 산업부산물 등이 주로 사용된다. 알칼리성 산업부산물 중의 하나인 제지슬러지소각재(Paper Sludge Ash, PSA)는 칼슘 함량이 25-70%로 높고, 입자크기가 10-100㎛로 미세하여 광물탄산화에 유리하다. 본 연구에서는 PSA의 칼슘을 구연산나트륨(Na3C6H5O7)으로 용출한 뒤 그 용출액에 이산화탄소를 저장하고자 하였다. 실험은 PSA의 성분을 분석한 후 칼슘 용출반응과 탄산화반응으로 나누어 실시하였고, 칼슘 용출반응은 0.1, 0.3, 0.5, 0.7, 1.0, 1.5M의 용제농도와 1, 2, 5g/50mL의 고액비(Solid to Liquid ratio) 조건에서 진행되었다. 탄산화 반응은 용출반응에서 도출한 용제 농도 0.3M, 고액비 1g/50mL에서 1L의 용출액을 제조하여 이산화탄소 유량 0.1L/min으로 30분 동안 이루어졌고, 일정한 시간 간격으로 용액을 채취하여 칼슘농도 및 pH 변화를 관찰하였다. 이산화탄소를 주입하는 동안 pH가 초기 약 13.4에서 20분 이내에 9.38까지 서서히 감소하였다. 그리고 칼슘 농도가 초기 4283mg/L에서 10분 이내에 2713mg/L로 감소하면서 흰색 고체가 생성되었다. 그러나 탄산화반응 시간이 10분보다 길어지면서 생성된 고체가 모두 재 용해되어 회수할 수 없었다. 따라서 고체의 용해를 방지하기 위해 용액의 칼슘 농도가 증가하는 시점에서 이산화탄소 주입을 중지한 후 일정 시간 동안 방치하고, 생성된 고체를 회수하여 X-선 회절분석을 통해 확인하였다. 결과적으로 10분 동안 이산화탄소를 주입한 후 30분간 방치했을 때 약 7.33g의 고체를 회수하였고, 대부분의 고체는 calcite 형태의 탄산칼슘임을 확인하였다. PSA와 구연산나트륨을 이용하여 저장한 이산화탄소의 양은 약 161.3kg CO2/ton PSA이었다. 실험에 사용된 추출 용제인 구연산나트륨은 칼슘과 반응하여 다음과 같은 착물을 형성할 수 있다.
2Na3C6H5O7 + 3CaO + 3H2O → Ca3(C6H5O7)2 + 6NaOH
위 반응식에 따라 PSA로부터 효과적으로 칼슘이 용출될 뿐만 아니라 용출액의 pH가 높아 추가적인 알칼리물질 주입이 없더라도 탄산화 반응에 매우 유리하다.
해수에는 나트륨, 마그네슘, 칼슘을 비롯한 다양한 종류의 무기물이 용해되어 있다. 마그네슘은 낮은 밀도와 강한 경도의 장점으로 인해 최근 그 활용도가 크게 증가되고 있다. 자동차 산업과 컴퓨터, 핸드폰 등 많은 전자기기에 마그네슘이 활용되고 있으며, 알루미늄 합금은 항공기 부품으로 사용되기도 한다. 선행 연구에서는 염을 다량 포함하고 있는 간수(bittern)와 염수(brine)에서 마그네슘을 회수하기 위하여 수산화나트륨 등 알칼리 물질을 주입하여 용존 마그네슘을 수산화마그네슘[Mg(OH)2]으로 침전시키는 실험을 진행하였다. 본 연구에서는 해수에 용존되어있는 마그네슘(1477 ppm)을 회수하기 위하여 알칼리 산업부산물인 제지슬러지소각재(Paper Sludge Ash, PSA)를 사용하였다. 해수에 포함되어있는 용존 마그네슘을 침전시키기 위해 해수 200 mL에 PSA 4 g을 주입하였다. 수산화마그네슘 침전반응이 완료된 후, 여과하여 고체(PSA와 침전된 수산화마그네슘)와 여과액을 분리하였다. 여과액의 마그네슘과 칼슘 농도는 각각 0.19, 2623 ppm이었고, pH는 12.32이었다. PSA에 의해 해수의 마그네슘은 모두 침전하였으나, PSA로부터 용해된 칼슘의 영향으로 여과액의 칼슘농도는 5배 이상 증가하였다. 고체를 105℃에서 12 시간 동안 건조한 다음, 고체로부터 마그네슘만을 선택적으로 용출하기 위해 건조한 고체에 2 M 황산 40 mL를 넣고 30 분 동안 교반하였다. 여과에 의해 PSA를 제거한 다음, 여과액의 마그네슘과 칼슘 농도를 측정하였다. 침전과 용출반응을 통해 해수의 마그네슘은 90 % 이상 회수되었고, 여과액의 칼슘농도는 6.57 ppm으로 매우 낮았다. 칼슘이 황산과 반응하여 황산칼슘(CaSO4)으로 침전하였기 때문에 칼슘농도가 감소한 것이다.
산업화가 가속화되면서 지구온난화는 환경을 위협하는 큰 문제로 대두되고 있다. 특히 지구온난화에 50% 이상 기여하는 물질인 이산화탄소는 그 농도가 산업혁명 이후 급격히 증가해왔으며, 이 문제를 해결하기 위해 전세계적으로 이산화탄소 저장기술(Carbon Capture and Storage, CCS)을 개발하는 연구가 활발하게 진행되고 있다. CCS 중 하나인 광물탄산화는 이산화탄소를 칼슘, 마그네슘 등과 반응시켜 불용성 탄산염으로 고정하는 기술이며, 원료로 칼슘이나 마그네슘을 다량 함유한 천연광물 또는 산업부산물이 사용될 수 있다. 제지슬러지소각재(Paper Sludge Ash, PSA)는 제지공정에서 생성되는 산업부산물로 칼슘을 다량 함유하고 있어 광물탄산화에 적합한 재료이다. 본 연구에서는 PSA를 암모늄염(ammonium chloride, ammonium acetate)과 반응시켜 칼슘을 선택적으로 용출한 후 탄산화하는 과정에서 암모니아수를 추가했을 때 탄산화 효율이 어떻게 변하는지를 알아보았다. 용제로 암모늄염 용액(0.3M, 1L)을 사용하여 PSA(20g)로부터 칼슘을 용출시킨 용출액 A와 용출액 A에 암모니아수(1.76mL)를 추가한 용출액 B를 각각 준비한 다음, 대기압 하에서 각 용출액에 이산화탄소(0.1L/min)를 30분 동안 주입하여 탄산화반응을 진행하였다. 용출액 A를 이용한 탄산화반응 결과 6.81g의 탄산칼슘을 회수하였고, 생성된 고체를 기준으로 산출한 이산화탄소 저장량은 149.8kg CO2/ton PSA이었다. 암모니아수를 추가한 용출액 B를 이용한 탄산화반응에서는 반응종료 후 용액 중 칼슘농도가 용출액 A 경우의 절반 정도이었다. 용출액 B로부터 7.69g의 탄산칼슘을 회수하였고, 이 결과는 이산화탄소를 169.2kg CO2/ton PSA 저장하였음을 의미한다. 칼슘 용출액 A에 암모니아수를 추가하면 완충작용이 지속되면서 높은 pH가 유지되기 때문에 용출액 B에서 탄산화 효율이 더 높아졌다. 또한 용출액 B에서처럼 암모니아수를 추가하면 한번 사용한 암모늄염 용제를 간접탄산화에 재사용할 때 칼슘 용출효율을 높이는데 기여하리라고 예상한다.
현재 폐기물로 분류되는 제지슬러지는 녹생토로 재활용되거나 해양투기되었으나 해양투기금지와 녹생토 수요감소로 제지 슬러지의 폐기물 처리비용이 증가되고 있다. 이런 상황에서 폐기물인 제지 슬러지를 주원료로 회수하여 폐기물 처리의 다원화 방법의 일환으로 육성하고 제지 업종의 기업은 상호 네트워크를 구축하여 폐기물을 저가 원료로 재사용하는 시스템을 구축한다면, 환경적, 경제적인 측면에서 모두 유리하다. 연구개발 방향은 제지 슬러지에서 Ash 및 Dirt, Sticky를 제거하여 Fiber를 회수하며, 회수된 Recycled Fiber를 배합하여 골심지를 생산하는데 있다. Sticky 및 Dirt 제거에 효과적인 Slot Screen을 사용하여 제지 슬러지의 불순물을 제거하였다. Screen Basket Slot Size를 바꿔가며 제거 효율을 측정한 결과 Slot Size를 작게 하면 할수록 Sticky 및 Dirt의 제거효율은 증가하나 Screen Reject가 많이 발생하였다. 따라서 Screen Slot Size 0.25mm에서 Sticky 제거 효율이 가장 우수하며, 수율 또한 95% 이상으로 우수한 결과를 얻을 수 있었다. 원료 농축 공정에서 사용되는 대표적인 저농축 설비인 Washer를 사용하여 Ash를 추가적으로 제거하였다. 일반적인 Washer 설비인 One Stage Washer는 Ash 제거율이 평균 32% 수준이며, 잉크제거율 또한 평균 19% 수준이었다. 따라서 좀 더 양호한 이물질 제거율을 위해 One Stage Washer보다 고속으로 운전되며 이물질 제거효율이 높다고 알려진 High Speed Washer를 통해 Ash 제거율을 평가한 결과 Ash는 평균 58% 수준의 제거율을 보였으며, 잉크제거율은 평균 50% 수준으로 One Stage Washer보다는 양호한 이물질 제거율을 보였다. 제지 슬러지 회수 Line을 통해 골심지 생산 시 Recycled Fiber의 배합율을 25~30%까지 상향하여 골심지를 생산한 결과 제품 Ash가 증가하나 제품의 주요 품질 항목인 백색도 및 압축강도의 변화가 거의 없어 큰 문제없이 골심지 생산이 가능하였다.
Efforts were made to determine the activation energy and the reaction order by adopting Kissinger and Flynn-Wall-Ozawa analysis methods. All the data were acquired from TGA thermograms for the mixed fuels with different temperature heating rates. It could be known that both the coal and the mixed fuels decomposed thermally at temperature ranges of 300~700℃. The temperature at the maximum reaction rate, Tp, could be determined by DTG method, which could be obtained by differentiation of TGA thermogram. Kissinger analysis showed the linear relationship with experimental data, showing the activation energy of 319.64 ±4 kJ/mol. From Flynn-Wall-Ozawa analysis, it was shown that the activation energies and the reaction orders did not undergo any significant changes with both the conversions and the heating rates. It was considered from this facts that the combustion mechanism of the mixed fuels could not be affected by the extent of conversion and heating rate. In the present study, the activation energies showed different values according to the different analysis methods. The difference might be originated from the inconsistency of the mathematical data treatment method. In other words, while the activation energies obtained from the Kissinger method indicated the average values for overall reaction, that from Flynn-Wall-Ozawa method showed the average values for the each conversion around Tp.