Conductive polymer composites with high electrical and mechanical properties are in demand for bipolar plates of phosphoric acid fuel cells (PAFC). In this study, composites based on natural graphite/fluorinated ethylene propylene (FEP) and different ratios of carbon black are mixed and hot formed into bars. The overall content of natural graphite is replaced by carbon black (0.2 wt% to 3.0 wt%). It is found that the addition of carbon black reduces electrical resistivity and density. The density of composite materials added with carbon black 3.0 wt% is 2.168 g/cm3, which is 0.017 g/cm3 less than that of non-additive composites. In-plane electrical resistivity is 7.68 μΩm and through-plane electrical resistivity is 27.66 μΩm. Compared with non-additive composites, in-plane electrical resistivity decreases by 95.7 % and through-plane decreases by 95.9 %. Also, the bending strength is about 30 % improved when carbon black is added at 2.0 wt% compared to non-additive cases. The decrease of electrical resistivity of composites is estimated to stem from the carbon black, which is a conductive material located between melted FEP and acts a path for electrons; the increasing mechanical properties are estimated to result from carbon black filling up pores in the composites.
The purpose of this study was to investigate the characteristics of macaroons prepared using natural color materials (Opuntia ficus-indica var. saboten (Re-N), mulberry leaf (Gr-N), pumpkin (Ye-N), and cocoa powder (Br-N)) and corresponding artificial food colorants (red (Re-A), yellow (Ye-A), green (Gr-A) and brown (Br-A)). The moisture content of macaroons prepared using natural color material was higher compared to the macaroons prepared using artificial food colorant. DPPH and ABTS radical scavenging activity was similar in both types of macaroons. Lightness and redness of Re-N, Gr-N, Ye-N, and Br-N macaroons were lower than Re-A, Gr-A, Ye-A and Br-A macaroons. Yellowness of Re-N was higher because of the browning reaction. The texture profile analysis revealed lower hardness when natural color powder was employed. In the sensory evaluation, overall acceptability was not significantly different between natural colored and artificial colored macaroons. As a result, macaroons with the natural color material were softer and showed higher antioxidative activity, however, organoleptic properties were not much different when compared with macaroons with artificial colors. Apparently, it is stated that more studies on the development of macaroons with more enhanced physical functionality and good taste using natural materials should be performed.
A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and 37.7 μm. The density of the composite increased from 2.25 to 2.72 g/cm3 as the graphite size increased from 37.7 to 610.3 μm. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were 1.99 × 10−3 Ωcm and 2.02 %, respectively, when the graphite size was 401.6 μm. The flexural strength of the composite was 10.3MPa when the graphite size was 401.6 μm. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.
1990년 중반부터 차량의 증가와 아스팔트 포장 품질의 한계로 인하여 아스팔트 포장은 심각한 파손이 발생하여 사회적인 문제로 부각되기 시작하였다. 이러한 문제점을 해결하기 위하여 실무적으로 도입된 간 단한 처지 방안이 개질아스팔트의 도입이었다. 여러 종류의 개질아스팔트가 도입되어 아스팔트 포장 파손 을 해결하기 위하여 노력하였으나 현재까지도 만족할 만한 해결책을 찾지 못하고 있는 실정이다. 본 연구 는 포장 파손의 해결책을 찾기 위한 연구로서 폐타이어 칩과 천연무기재료를 일정한 비율로 맞추어 각각 총 바인더양의 12%와 10%로 혼합하여 아스팔트 포장의 주요 파손으로 지적되고 있는 소성변형 및 간접인 장강도의 향상 가능성에 대하여 실내에서 시험을 실시하였다. 시험에 사용한 아스팔트는 PG 64-22 등급 의 바인더이며, 입도는 WC-2를 사용하였다. 성능비교를 위하여 마샬안정도, 간접인장강도, 동결융해를 이용한 수분민감도, 동적안정도를 측정하였으며, 이를 일반아스팔트 공시체 및 SBS개질아스팔트 공시체 와 비교를 실시하였다. 시험결과, 총 12%를 첨가한 아스팔트 공시체의 평균 마샬안정도는 19,619N, 10%를 첨가한 아스팔트 공 시체의 평균마샬안정도는 17,725N가 측정되었고, 9,022N의 평균 마샬안정도가 나온 일반아스팔트 공시체 에 비하여 각각 117%, 96% 더 높게 측정되었다. 이는 KS규격 기준(7,500N)을 만족하지만 23,580N의 평 균마샬안정도가 나온 SBS 개질 아스팔트 공시체 기준 각각 83% , 75%의 성능이 발현되어 추후 연구가 더 필요하다. 간접인장강도의 경우, 총 12%를 첨가한 아스팔트 공시체와 10%를 첨가한 아스팔트 공시체의 평 균간접인장강도 모두 1.5MPa가 측정되었고, 일반아스팔트 공시체는 0.8Mpa, SBS 개질아스팔트 공시체 는 1.7MPa가 측정되었다. 수분민감도 역시, 총 12%를 첨가한 아스팔트 공시체와 10%를 첨가한 아스팔트 공시체의 평균인장강도비 모두 0.8이 나왔으며, 일반아스팔트 공시체 및 SBS 개질아스팔트 공시체는 각각 0.6과 0.7의 평균인장강도비가 측정되었다. 동적안정도의 경우 일반 아스팔트는 4,200회/mm, 12%를 첨 가한 아스팔트 공시체는 8,400회/mm, 10%를 첨가한 아스팔트 공시체는 5,040회/mm, SBS 개질아스팔트 공시체는 6,890회/mm가 측정되었다.
This study is carbonation resistance of the natural durability enhancement materials that can reduce cracking of the concrete. The durability enhancement materials of natural were substituted 10%, 20%, 30% of cement, the results were confirmed excellent carbonation resistance as the more increasing the natural durability enhancement.
This study is the study of the strength characteristics of the study of the natural durability enhancement materials that can reduce cracking of the concrete. The durability enhancement materials of natural were substituted 10%, 20%, 30% of cement, the results were confirmed excellent strength as the more increasing the natural durability enhancement.
This study is the study of the chlorine ion penetration resistance of the study of the natural durability enhancement materials that can reduce cracking of the concrete. The durability enhancement materials of natural were substituted 10%, 20%, 30% of cement, the results were confirmed excellent chlorine ion penetration resistance as the more increasing the natural durability enhancement.