검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2015.02 구독 인증기관 무료, 개인회원 유료
        H2S adsorption characteristics of adsorbent made by coffee waste were investigated. For analyses of the manufactured adsorbent, various methods such as scanning electron microscope(SEM), measurements of BET(Brunauer Emmett Teller) surface area, pH, and Iodide adsorption were adopted. As major adsorption characteristics, adsorption equilibrium capacity was measured by using a batch type experimental apparatus for operating variables such as adsorption temperature(25~45℃), adsorbent types. The experimental result showed that the H2S adsorption equilibrium capacity of adsorbent made by coffee waste much more increases with steam activation for the coffee waste.
        4,000원
        2.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        During the past few decades, significant increase in the consumption of coffee has led to rapid increase in the production of coffee waste in South Korea. Spent coffee waste is often treated as a general waste and is directly disposed without the necessary treatment. Spent Coffee Grounds (SCGs) can release several organic contaminants, including caffeine. In this study, leaching tests were conducted for SCGs and oxidative degradation of caffeine were also conducted. The tested SCGs contained approximately 4.4 mg caffeine per gram of coffee waste. Results from the leaching tests show that approximately 90% of the caffeine can be extracted at each step during sequential extraction. Advanced oxidation methods for the degradation of caffeine, such as UV/H2O2, photo-Fenton reaction, and UV/O3, were tested. UV radiation has a limited effect on the degradation of caffeine. In particular, UV-A and UV-B radiations present in sunlight cause marginal degradation, thereby indicating that natural degradation of caffeine is minimal. However, O3 can cause rapid degradation of caffeine, and the values of pseudo-first order rate constants were found to be ranging from 0.817min-1 to 1.506 min-1 when the ozone generation rate was 37.1 g/m3. Additionally, the degradation rate of caffeine is dependent on the wavelength of irradiation.
        3.
        2017.07 KCI 등재 서비스 종료(열람 제한)
        This study performed a basic test to evaluate the energy value of food waste and ground coffee residue, and measured the calorific value of mixtures of food waste and ground coffee in the mass ratios of 1 : 1, 1 : 2, and 2 : 1. According to the results of this study, food waste, ground coffee, and their mixtures are technically viable as energy resources because they all meet Korea’s quality criteria for Bio-SRF. The proximate analysis results for food waste and ground coffee mixture showed 51.6% moisture, 46.2% combustibles, and 2.2% ash content. The high calorific value and low calorific value measured by the SE-C5500 Bomb Calorimeter were 4,602 kcal/kg and 3,927 kcal/kg, respectively. Heavy metal analysis showed the absence of mercury (Hg) and arsenic (As). Therefore, food waste, ground coffee residue, and their mixture sample met Korea’s quality criteria for Bio-SRF, which are technically and economically viable for use as bio-solid fuel (Bio-SRF).
        4.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Converting biomass to biocrude oil has been extensively studied worldwide as a renewable energy technology and a solution to global warming caused by overuse of fossil fuels because it is a carbon neutral fuel that originates from biomass and, thus, could help prevent climate change. Fast pyrolysis is an effective technology for producing biocrude-oil, and woody biomass is usually used as feedstock. Although many studies have been performed with this feedstock, high production cost and low higher heating value (HHV) have frequently reported as challenging barriers to commercialization. Thus, coffee ground residue was selected as an alternative feedstock to overcome this barrier due to its higher HHV than other biomasses, as well as an expected improvement in the recycling rate of organic waste from many coffee shops. A kinetic study on the thermal decomposition reaction of ground coffee residue was carried out previously to investigate pyrolysis characteristics by thermogravimetric analysis, and its kinetic parameters were studied using two calculation models. A bubbling-fluidized-bed reactor was used for fast pyrolysis and the yield and characteristics of the biocrudeoil from ground coffee residue were investigated at reaction temperatures of 400-600°C. The activation energy of the decomposition reaction was calculated separately to be 41.57 kJ/mol and 44.01-350.20 kJ/mol with the above two methods. The highest biocrude-oil content was about 51.7wt% at 550°C.
        5.
        2015.11 서비스 종료(열람 제한)
        전세계적으로 에너지 부족문제가 대두됨에 따라 신재생에너지의 필요성이 증가하고 있다. 신재생에너지 원별 생산량의 50% 이상이 폐기물을 통해 생산된다. 폐기물을 처리할 경우 발생되는 환경 문제를 최소화하면서 에너지를 생산한다는 장점이 있기 때문이다. 이와 동시에 최근 커피선호도가 지속적으로 증가하면서 커피전문점 점포수가 급격하게 증가하고 있다. 결과적으로 2014년 커피 원두의 수입량이 139천톤을 기록하였으나, 마시는데 사용되는 커피의 양은 커피 원두야 약 0.2%만을 차지하며 나머지는 커피찌꺼기의 형태이며 폐기물로 버려지고 있다. 이러한 문제점을 해결하기 위하여 최근 커피전문점에서는 커피찌꺼기를 활용할 수 있도록 소비자에게 배포하고, 재활용 방법을 알리고 있으나 이렇게 재사용되는 커피찌꺼기의 양은 발생되는 양에 비해 미비한 수치이다. 따라서 본 연구에서는 막대한 양이 발생하는 커피찌꺼기 폐기물을 이용하여 SRF(Solid Refuse Fuel) 연료를 생산하는 방법으로 수열탄화를 사용하였으며, 이 과정에서 적합한 처리온도를 찾고자 하였다. 수열탄화 방식은 열화학적 처리 방식으로 시료내의 물리 화학적 특성을 변화시켜 개선된 연료를 생산하는 방법이다. 이러한 방식으로 생산된 SRF는 원소분석, 공업분석, 발열량측정 등을 통해 분석한 결과, SRF의 특성이 저급석탄과 비슷하였다. 이러한 결과 수열탄화를 거친 SRF의 특성이 개선된 것으로 판단되었으며, 최종적으로 에너지 회수효율을 평가하였다. 그 결과 본 연구의 반응온도 범위(180℃-330℃)에서 가장 좋은 효율은 210℃에서 나타났다.