검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 104

        1.
        2024.10 구독 인증기관·개인회원 무료
        시멘트 콘크리트 포장의 양생 공정에서는 피막양생제를 살포하는 것이 가장 일반적이며 양생포와 같은 덮개를 콘크리트 포장 위에 덮어 온도와 습도를 유지하는 방법으로 콘크리트 포장의 강도를 발현시키기도 한다. 콘크리트 포장의 미끄럼 저항 및 배수, 주행안전 성을 향상시키기 위해서는 양생 공정 이전에 표면 타이닝 공정을 수행하는 것이 일반적이지만 양생 이후에 그루빙을 실시하기도 한다. 본 연구에서는 콘크리트 포장 품질에 지대한 영향을 주는 양생 작업과 표면 그루빙 작업의 일원화 방법 개발을 위한 기초 연구로써 3D 스케치 프로그램과 3D 프린터를 이용하여 타원형, 삼각형, 사각형 모양의 홈으로 그루빙을 형성하면서 동시에 양생포로 사용이 가 능한 그루빙 양생 플레이트를 설계하여 제작하였다. 그루빙 양생 플레이트의 적용성을 분석하기 위해 콘크리트 공시체를 제작하여 실 내 실험을 수행하였으며 양생 플레이트의 그루빙 홈 형상에 따른 콘크리트 포장 표면 그루빙 형성 상태를 분석하였다.
        10.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Nitrogen oxides (NOx) are the main precursors to generate fine particulate matter, which significantly contribute to air pollution. NOx gases are transmitted into the atmosphere in large quantities, especially in areas with a high volume of traffic. Titanium dioxide (TiO2), which is a photocatalytic reaction material, is very efficient for removing NOx. The application of TiO2 to concrete road structures is a good alternative to remove NOx. Generally, TiO2 concrete is produced by mixing concrete with TiO2 . However, a significant amount of TiO2 in concrete cannot be exposed to air pollutants or UV. Therefore, an alternative method of penetrating TiO2 into horizontal concrete structures using a surface penetration agent was proposed in a previous study. This method may not only be economical but also applicable to various types of horizontal concrete structures. However, the TiO2 penetration method may not be applied to vertical structures because it has a mechanism for the penetration of TiO2-containing penetration agents via gravity and capillary forces. Therefore, this study aimed to evaluate the applicability of the pressurized TiO2 fixation method for existing vertical road structures. METHODS : For the application of vertical concrete structures — such as retaining walls, side ditches, and barriers — the applicability of a static and dynamic pressurized TiO2 fixation method was evaluated according to the experimental conditions, considering the amount of pressure and time. The penetration depth and distribution of TiO2 particles in the concrete specimen were measured using SEM/EDAX. In addition, the NOx removal efficiencies of TiO2 concrete were evaluated using the NOx analysis system. RESULTS : As a result of measuring the penetration depth and distribution of TiO2 in the concrete, it was found that the surface-predicted mass ratio increased with increasing pressure and time. In the case of the static pressurized fixation method, it was confirmed that a pressure time of at least 10 s at a pressure of 0.2 MPa and 5 s at a pressure higher than 0.3 MPa were required to achieve a NOx removal efficiency higher than 40 %. Conversely, for the dynamic pressurized fixation method applying a hitting energy of 16.95 J, NOx removal efficiencies higher than 50 % were secured in a pressure time of more than 3 s. CONCLUSIONS : The results of this study showed that the static and dynamic pressurized TiO2 fixation method was advantageous in penetrating and distributing TiO2 particles into the concrete surface to effectively remove NOx. It was confirmed that the proposed method to remove NOx was sufficiently applicable to existing vertical concrete road structures.
        4,200원
        11.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study analyzes the service life of the repair methods of jointed plain concrete pavement (JPCP) on expressways in Korea using PMS data. METHODS : The Korea Expressway Corporation PMS data acquired from five major expressways in Korea were used for the analysis. The service lives of the repair methods were considered for two different cases: 1) the previous repair methods had been completely rerepaired by another or the same method due to their damage, and 2) the current repair methods were still in use. RESULTS : The service lives of D/G and section repair were shown to be at least 30 % and 50 % shorter than expected, respectively. Joint sealing and crack sealing exhibited a service life similar to that expected. The Mill-and-Asphalt-overlay method showed an approximately 30 % longer service life; this might be because some damage to the asphalt overlay is typically neglected until subsequent maintenance and repair. When multiple repairs were applied in series for an identical pavement section, the service life of repairs on previously damaged secti ons become even shorter compared to their first application. CONCLUSIONS : It was found that the analyzed service life of most important repair methods did not reach the expected service life, and that the service life of the same repair method becomes shorter as applied to the previously repaired concrete pavement sections. These shorter service lives should be seriously considered in future JPCP repair strategy development.
        4,000원
        13.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Nitrogen oxide (NOx) is a particulate matter precursor, which is a harmful gas contributing to air pollution and causes acid rain. The approaching methods for NOx removal from the air are the focus of numerous researchers worldwide. Titanium dioxide (TiO2) and activated carbon are particularly useful materials for NOx removal. The mechanism of NOx elimination by using TiO2 requires sunlight for a photocatalytic reaction, while activated carbon absorbs the NOx particle into the pore itself after contact with the atmosphere. The mixing method of these two materials with concrete, coating, and penetration methods on the surface is an alternative method for NOx removal. However, this mixing method is not as efficient as the coating and penetration methods because the TiO2 and the activated carbon inside the concrete cannot come in contact with sunlight and air, respectively. Hence, the coating and penetration methods may be effective solutions for directly exposing these materials to the environment. However, the coating method requires surface pretreatment, such as milling, prior to securing contact, and this may not satisfy economic considerations. Therefore, this study aims to apply TiO2 and activated carbon on the concrete surface by using the penetration method. METHODS : Surface penetrants, namely silane siloxane and silicate, were used in this study. Photocatalyst TiO2 and adsorbent activated carbons were selected. TiO2 was formed by the crystal structures of anatase and rutile, while the activated carbons were plant- and coal-type materials. Each penetrant was mixed with each particulate matter reductant. The mixtures were sprayed on the concrete surface using concentration ratios of 8:2 and 9:1. A scanning electron microscopy with energy dispersive X-ray equipment was employed to measure the penetration depth of each specimen. The optimum concentration ratio was selected based on the penetration depth. RESULTS: TiO2 and activated carbon were penetrated within 1 mm from the concrete surface. This TiO2 distribution was acceptable because TiO2 and activated carbon locate to where they can directly come in contact with sunlight and air pollutant, respectively. Infiltration to the concrete surface was easily achieved because the concrete voids were bigger than the nanosized TiO2 and microsized activated carbon. The amount of penetration for each particulate matter reductant was measured from the concrete surface to a certain depth. CONCLUSIONS : The mass ratio on the surface can be predicted from the mass ratio of the particulate matter reductant measurement distributed through the penetration depth. The optimum mass ratio was also presented. Moreover, the mixtures of TiO2 with silane siloxane and activated carbon with silicate were recommended with an 8:2 concentration ratio.
        4,900원
        15.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In Korea, asphalt overlay has been used as a typical alternative rehabilitation method for deteriorated pavements. However, asphalt overlay has problems due to poor bonding of the asphalt overlay and the old concrete. Recently, concrete overlays, which have advantages such as long-term durability and high structural capacity to carry heavy traffic, have been considered for rehabilitation construction. However, concrete overlays have limitations such as difficulty in opening to traffic and pavement noise. Recently, an appropriate fine-size exposed aggregate concrete pavement technique was reported to solve these problems. Therefore, this study aims to suggest an optimum mixture design of fine-size exposed aggregate concrete overlay (EACO) that can ensure low noise and early strength. METHODS : The optimum mixture design of fine-size EACO is determined to ensure adequate structural performance for early traffic opening and good functional performances such as low noise. Therefore, the optimum mixture proportion is determined based on the optimum design of aggregate content to produce a low-noise pavement texture by controlling the exposed aggregate number (EAN) and mean texture depth (MTD). RESULTS : The water-cement ratio and unit cement ratio were used to determine the mixture designs to achieve workability and adequate strength for early traffic opening. The texture was determined by selecting the maximum size of coarse aggregate smaller than 10 mm with an S/a ratio of less than 30% for low noise. With these mixture proportions, the EAN and MTD were 50±5 / 25cm2 and 1.0±0.2 mm. Respectively, which meet the criteria for EACO. CONCLUSIONS: In this study, an optimum mixture design of EACO for early traffic opening and low noise is suggested by using earlyhigh strength cement, and the pavement texture is implemented considering EAN and MTD. In addition, a pavement surface texture criterion is suggested for the quality control of EACO.
        4,300원
        17.
        2017.10 구독 인증기관·개인회원 무료
        서 론 빠른 경제성장과 함께 <2016년 국토교통부> 자동차 등록대수는 2180만을 돌파하였다. 이처럼 많은 차량들이 도로를 사용하게 됨에 따라 기존의 아스팔트도로와 콘크리트도로가 많이 노후와 되어있는 추세이며, 이에 도로의 유지.보수 관리의 중요성이 높아지게 되었으며, 유지.보수간에 가장 많이 사용되는 공법 중에 하나인 덧씌우기 공법에 사용하는 택코트의 성능을 검토하기 위해 수행되었다. 실험 방법 및 사용재료 2.1 사용재료 실험에 사용된 택코트는 일반적으로 사용되어지는 RSC-4와 택코트 필름을 사용하였으며, 부착강도를 측정하기 위해 양생시간을 동일하게 하여 Pull of test를 통해 부착강도를 측정하였다. 2.2 실험 방법 휨몰드와 마샬 몰드를 사용하여 각각 택코트 RSC-4와 필름을 사용하여 공시체를 제작하였다. 1층 다짐 후 24시간 양생 후 2차 다짐을 한 후에 48시간 부착강도를 측정하였다. 그림1은 본 실험에 사용된 시편의 제작과정이며, 그림2는 부착강도 테스트 후의 모습이다. 결과 및 고찰 3.1 동일한 양생조건에서 콘크리트 위에 부착한 택코트 종류에 따른 부착강도 그림4은 휠트래킹 몰드로 만든 콘크리트에 부착한 택코트 종류에 따른 부착강도를 나타낸 그래프이다. 3.2 동일한 양생조건에서 아스팔트 위에 부착한 택코트 종류에 따른 부착강도 그림 5는 마샬 몰드로 만든 아스팔트 공시체 위에 부착한 택코트 종류에 따른 부착강도를 나타낸 그래프이다. RSC-4의 경우에는 살포 후 30분간 상온양생을 실시하였다 결 론 일반적으로 사용되어지고 있는 택코트 인 RSC-4의 경우 유화아스팔트라는 성질 때문에 충분한 양생이 필요하여 공기가 늘어나게 되어 실제 현장에서 규정에 맞게 사용하기가 힘든 실정이다. 도로 유지.관리 공법중 하나인 덧씌우기 공법에 사용되는 택코트의 종류와 부착하는 재료에 따른 부착 강도평가 실험결과는 다음과 같다. 1) 콘크리트 위에 각각 RSC-4와 택코트 필름을 부착하여 Pull-off-test 장비를 이용하여 부착강도를 평가한 결과 각각 0.77, 0.76 으로 비슷한 결과를 나타냈다. 2) 아스팔트에 부착한 RSC-4와 택코트 필름을 부착하여 부착강도를 평가했을때와 비슷한 경향을 나타냈다. 각각 1.241, 1.304로 택코트 필름과 보호필름을 사용한 쪽이 더 높게 나타났다. 이는 공사기간을 단축시킬 수 있을 뿐만 아니라 트래피커빌리티를 고려하였을 때 택코트 필름과 보호 필름을 사용하여 더 효율적으로 유지.보수를 할 수 있을 것으로 판단된다
        18.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS: Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS: According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.
        4,000원
        19.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES: This study is to develop the optimum mixing proportions for cement concrete pavement with using recycled aggregates. METHODS: The mixture varied recycled coarse aggregates content from 50 % to 100 % to replace the natural coarse aggregates by weight. Tests for fundamental properties as a cement concrete pavement were conducted before and after hardening of the concrete. RESULTS: It was found that the variation in the amount of the recycled aggregate affected the compressive and flexural strength development, as well as the chloride ion penetration resistance. As the amount of the recycled aggregate content increased the compressive and flexural strength and the resistance to chloride ion penetration decreased. However, the resistance to freeze-thaw reaction was affected significantly. In addition, the gradation of the aggregate became worse and hence so did the coarseness factor as the recycled aggregate amount increased. CONCLUSIONS : The fundamental properties of the concrete with recycled aggregate does not seem to be appropriate when the recycled aggregate quality is not guaranteed up to a some level and its replacement ratio is over 50%. The optimized gradation of the aggregates should also be sought when the recycled aggregate is used for the cement concrete pavement materials.
        4,000원
        1 2 3 4 5