교통안전시설물의 관리는 도로교통의 안전과 직결되는 문제이다. 운전자는 신호등, 표지판, 노면표시 등을 통해 운전에 필요한 정보 를 얻는다. 노후된 표지판과 노면표시는 운전자에게 잘못된 정보를 제공할 수 있으므로 주기적인 시설물의 관리가 필요하다. 본 연구 는 딥 러닝 기술을 활용해 운전자 시각의 영상 자료에서 교통안전표지를 자동으로 탐지하고자 하며, 교통안전표지의 공통된 색상 특 징을 기반으로 클래스를 그룹으로 묶어 데이터셋을 구축하는 방법을 제안한다. 객체탐지의 성능지표로 널리 활용되는 mAP를 사용해 클래스 묶음 여부에 따른 탐지 성능을 비교한 결과, 색상 기반 클래스 묶음을 적용한 모델의 탐지 성능이 비교군에 비해 약 36% 상승 함을 확인하였다.
Abstract Handling imbalanced datasets in binary classification, especially in employment big data, is challenging. Traditional methods like oversampling and undersampling have limitations. This paper integrates TabNet and Generative Adversarial Networks (GANs) to address class imbalance. The generator creates synthetic samples for the minority class, and the discriminator, using TabNet, ensures authenticity. Evaluations on benchmark datasets show significant improvements in accuracy, precision, recall, and F1-score for the minority class, outperforming traditional methods. This integration offers a robust solution for imbalanced datasets in employment big data, leading to fairer and more effective predictive models.
구조실험을 위한 데이터 저장소는 구조실험에 관련된 실험정보를 구조공학자와 연구자들이 편리하게 저장하고 열람할 수 있도록 효율적인 구성을 가져야 한다. 데이터 저장소에 대한 평가는 데이터 저장소 자체적인 구성에 대한 평가와 데이터 저장소에 저장된 실제 정보의 구성에 대한 평가로 나눌 수 있다. 데이터 저장소의 자체적인 구성은 클래스로 나타낼 수 있고 데이터 저장소 내에 저장된 실제의 실험정보는 객체로 표현할 수 있는데 본 논문은 클래스와 객체가 가지고 있는 속성구성에 대한 평가요소를 제안한다. 클래스의 속성구성 평가요소로는 클래스내 속성수와 구체적인 값 또는 객체에 의해 구분한 속성의 종류별 수 등이 있는데 이러한 평가요소들을 이용하여 데이터 저장소가 정한 구성을 이해할 수 있다. 객체의 속성구성 평가요소로는 객체내 값있는 속성수 등이 있는데 데이터 저장소내의 실제 실험정보가 레벨별로 어떻게 저장되어 있는가를 파악할 수 있다.
본 논문은 게임 소프트웨어 프로세스 중에서 분석 및 설계 단계의 산출물 중 시퀀스 다이어그램과 OCL 컨트랙트 명세를 기반으로 하여 테스트 모델을 생성하고 생성된 모델을 기반으로 하여 테스트 케이스를 생성하는 기법을 제안 한다. 생성된 테스트 케이스는 테스트 수행뿐만 아니라 테스트 자동화를 위하여 생성하는 테스트 드라이버 작성시 활 용 가능하다.
The military Services have sought to improve the overall quality, management, and delivery of military Technical Information in all of its aspects. The efforts concentrated on developing IETM(Interactive Electronic Technical Manual) by using the application of computer technology for the storage, control, and presentation of maintenance, system-operation, training, and other forms of logistic-support Technical Information. In this paper, the methodologies are presented to evaluate the operational effectiveness of IETM which consists of confirmity and performance. Confirmity is evaluated by the check-sheet based on the standard of CALS, and performance by the comparison of the technician performance between IETM and paper-TM.
The military services have sought to improve the overall quality, management, and delivery of military technical information in all of its aspects. The efforts concentrated on developing IETM(Interactive Electronic Technical Manual) by using the applicati