콘크리트 도로포장의 손상은 차량의 이동에 의한 진동, 겨울철 제설제 사용, 동결융해 작용 등이 주요 손상원인으로 나타나고 있다. 이러한 손상을 해결하기 위하여 열화 원인에 능동적으로 대응하는 보수재료 및 방법이 적용되어야 하나, 일반적으로 단면복구, 부분보 수를 반복적으로 사용함으로써, 지속적인 열화 현상의 발생으로 도로포장의 기능을 상실하게 된다. 또한, 기존에 사용되고 있는 보수 재료 중 무기계 보수재료는 폴리머 모르타르, 에폭시수지 모르타르 등이 있다. 이러한 재료는 높은 압축강도를 가지고 있으나, 취성 및 부착력이 약한 단점을 나타내고 있다. 따라서 본 연구에서는 보통포틀랜드시멘트(Ordinary Portland Cement), 칼슘알루미네이트계 재 료인 칼슘설포알루미네이트(Calcium Sulfo Aluminate) 및 비정질 알루미네이트(Amorphous Calcium Aluminate)를 사용한 보수 모르타르의 압축강도 및 내동해성을 평가하였다. 보수 모르타르의 압축강도를 분석한 결과, 비정질 알루미네이트를 사용한 보수모르타르의 압축강 도가 보통포틀랜드시멘트 및 칼슘설포알루미네이트를 사용한 보수 모르타르보다 우수하게 나타나는 것을 확인하였다. 한편, 보수 모르 타르의 내동해성 평가는 ASTM C 666 A법에 준하여 실험을 진행하였다. 그 결과, 칼슘설포알루미네이트 및 비정질 알루미네이트를 적용한 보수 모르타르의 상대동탄성계수가 300사이클에서 약 90%이상으로 나타나 보통포틀랜드시멘트를 사용한 보수 모르타르보다 우수한 내동해성을 나타내었다. 따라서, 칼슘설포알루미네이트 및 비정질 알루미네이트를 적용한 보수 모르타르는 우수한 압축강도 및 내동해성을 나타냄으로써 도로포장의 보수재료로 사용이 가능할 것으로 판단된다.
현재 국내에서는 아스팔트 포장의 예방적 유지보수공법의 사용이 미미하며, 시공 기준 또한 부재한 실정이다. 이에 따라 포장가속시 험시설을 활용하여 예방적 유지보수공법 적용에 대한 공용성 변화 분석을 진행하였다. 본 연구에서는 포그씰 A, B 공법에 대해 도포 량을 다르게 시공하여 기능성 인자인 BPN, MPD와 물성 인자인 공극률에 대해 추적조사를 진행하여 공용성 변화를 분석하였다. 주행 횟수의 산정은 가속시험기의 등가단축하중(ESAL, Equivalent SIngle Axle Load)의 관계식을 통해 실제 교통량을 등가단축하중으로 환산 하여 가속시험 주행 횟수를 산정하여 시공 후 공용 1년까지의 성능을 분석하였다. 분석 결과 기능성 인자인 MPD는 차량 주행으로 인 해 점차 감소하였으며, BPN은 시공 직후 포그씰 처리로 인한 미끄럼 저하가 지배적으로 나타났으나 점차 회복되는 것으로 나타났다. 물성 인자인 공극률은 주행 횟수가 증가할수록 포그씰이 포장 표면으로 채워져 공극률이 줄어드는 것으로 나타났다. 도포량별 분석 결과 도포량이 가장 많은 구간에서 저하율이 모든 인자에서 가장 큰 것으로 나타났으며, 두 도포량의 경우 인자별로 미세한 차이는 존재하였으나 대부분 비슷한 경향을 보이는 것으로 확인되었다.
In the contemporary era, 3D printing technology has become widely utilized across diverse fields, including biomedicine, industrial design, manufacturing, food processing, aerospace, and construction engineering. The inherent advantages of automation, precision, and speed associated with 3D printing have progressively led to its incorporation into road engineering. Asphalt, a temperature-responsive material that softens at high temperatures and solidifies as it cools, presents distinctive challenges and opportunities in this context. For the effective implementation of 3D printing technology in road engineering, 3D printed asphalt (3DPA) must exhibit favorable performance and printability. This requires attributes such as good fluidity, extrudability, and buildability. Furthermore, materials utilizing 3DPA for crack repair should possess high viscosity, elasticity, toughness, superior high-temperature stability, and resistance to low-temperature cracking. These characteristics ultimately contribute to enhancing pavement longevity and ensuring worker safety.
PURPOSES : The purpose of this study was to evaluate the common performance of asphalt pavements, determine the timing of preventive maintenance, and determine the optimal timing of application of the preventive maintenance methods by analyzing PMS data. METHODS : Using PMS data on asphalt pavement performance on highways, we derived the major damage factors and evaluated them according to the public period and traffic level. Among the factors evaluated, we determined those that could be improved by preventive maintenance, calculated the amount of change annually, and derived the timing of the application of the preventive maintenance method through correlation analysis. RESULTS : Among highway PMS data factors, crack variation was found to affect preventive maintenance, which increased rapidly after five years of performance. Traffic analysis showed that changes increased rapidly in the fifth, sixth, and seventh years when AADT exceeded 20,000, exceeded 10,000, and was under 10,000, respectively. Analysis of the amount of crack variation according to the pavement type showed that crack variation increased rapidly in the overlay section compared to the general AP section. CONCLUSIONS : Crack variation is the performance factor that was expected to be effective in preventive maintenance, and the PMS data showed that the initial application time of the preventive maintenance method varied by one year, depending on the traffic volume.
PURPOSES : In this study, a method to use magnesium phosphate ceramic (MPC) concrete for the surface maintenance of airport pavements with jointed concrete is developed.
METHODS : To investigate the application of a material incorporated with MPC for the surface maintenance of airport pavements with jointed concrete, structures with various cross-sections and thicknesses were constructed. The cross-section of the structure was modeled for the surface maintenance of four types of pavements and typical pavement construction processes, such as cutting, cleaning, production and casting, finishing, hardening, and joint reinstallation. Subsequently, the hours required for each process was determined.
RESULTS : The MPC concrete used for the surface maintenance of airport pavements with jointed concrete demonstrate excellent performance. The MPC concrete indicates a compressive strength exceeding 25 MPa for 2 h, and its hydration heat is 52.9 ℃~61.2 ℃. Meanwhile, the crushing and cleaning performed during the production and casting of the MPC require a significant amount of time. Specifically, for a partial repair process, a total of 6 h is sufficient under traffic control, although this duration is inadequate for a complete repair process.
CONCLUSIONS : MPC concrete is advantageous for the surface maintenance of airport pavements with jointed concrete. In fact, MPC concrete can be sufficiently constructed using existing concrete maintenance equipment, and partial repair works spanning a cross-sectional area of 11 m2 can be completed in 1 d. In addition, if the crushing and cleaning are performed separately from production and construction, then repair work using MPC concrete can be performed at a larger scale.
PURPOSES : The actual service life of repair methods applied to cement concrete pavement is analyzed based on de-icing agent usage.
METHODS : Highway PMS data pertaining to de-icing agent usage are classified into three grades: low (1~5 ton/lane/year), medium (5~8 ton/lane/year), and high (greater than 8 ton/lane/year). The repair methods considered include diamond grinding, patching, joint repair, partial depth repair, and asphalt overlay on five major highways. The service life of each repair method is analyzed based on the usage level of the de-icing agent.
RESULTS : The service lives of the applied repair methods are much shorter than expected. It is confirmed that the service life afforded by diamond grinding, patching, and joint repair methods are not significantly affected by the use of de-icing agents, whereas that afforded by asphalt overlay and partial depth repair methods is affected significantly. The service life afforded by the asphalt overlay and partial depth repair methods decreases at high usage levels of the de-icing agent (greater than 8 ton/lane/year).
CONCLUSIONS : Among the repair methods considered, the service life afforded by partial depth repair and asphalt overlay is affected significantly by the amount of de-icing agent used. Additionally, the differences between the expected and actual analyzed service lives should be considered in the next-generation maintenance strategy for cement concrete pavements.