해상교통관제센터에는 RADAR, AIS(Automatic Identification System), 기상센서, VHF(Very High Frequency) 등이 설치되어 운영되고 있으며, 해상교통관제사는 이를 활용하여 관제구역을 통항하는 선박의 동정을 관찰하고 정보를 제공하는 관제 업무를 수행한다. 이들 장 비에서 생성되는 각종 관제 데이터는 해상교통 상황을 분석하기 위한 자료로 그 활용 가치가 매우 높지만, 시스템 제조사간 호환성 부족 또는 정책상의 문제로 인해 체계적으로 관리되지 않고 있는 실정이다. 이에 본 연구에서는 해상교통관제센터에서 수집되는 관제 데이터 를 효율적으로 수집, 저장, 관리할 수 있는 관제 빅데이터 체계를 개발하였다. 개발된 관제 빅데이터 체계는 체계 개발의 중요한 이슈 중 하나였던 운영 안정성을 확보하기 위해 마이크로서비스 아키텍처를 적용하였으며, 효율적인 실시간 운항 정보의 탐색을 위해 저장소를 이원화하여 체계 성능을 향상시킬 수 있었다. 구현된 체계는 실해역 데이터를 적용한 시범 운영을 통해 성능을 확인하고 추가적인 개선 사항을 파악하였으며, 실제 관제 환경에서의 활용 가능성을 검토하였다.
해상교통관제센터(VTS)의 관제사는 구역 내 교통 상황을 빠르고 정확하게 파악하여 관제가 필요한 선박에게 정보를 제공하는 역할을 수행한다. 그러나 교통량이 급격히 증가하는 경우 관제사의 업무 부하로 인해 관제 공백이 발생하기도 한다. 이러한 이유에서 관 제사의 업무 부하를 줄이고, 일관성 있는 관제 정보를 제공할 수 있는 관제 지원 기술의 개발이 필요한 실정이며, 본 논문에서는 구역 내 이상 운항 선박을 자동으로 식별하는 모델을 제안하였다. 제안하는 이상 운항 식별 모델은 규칙 기반 모델, 위치 기반 모델, 맥락 기반 모 델로 구성되며, 대상 해역의 교통 특성에 최적화된 교통 네트워크 모델을 사용하는 특징이 있다. 구현된 모델은 시범센터(대산항 VTS)에 서 수집되는 실해역 데이터를 적용하여 실험을 수행하였다. 실험을 통해 실해역의 다양한 이상 운항 상황이 자동으로 식별됨을 확인하였 고, 전문가 평가를 통해 식별 결과를 검증하였다.
기상불량으로 인해 발생하고 있는 해양사고 중 해무 발생에 따른 시계제한은 선박의 좌초, 선저 파손 등의 사고를 유발하는 것과 동시에 사고에 따른 인명피해를 동시에 수반하고 있으며 이는 매년 지속적으로 발생하고 있다. 또한 해상에서의 저시정은 지역간 국소적으로 차이가 존재하는 경우에도 일괄적으로 여객선에 대한 운항 지연 및 통제 조치를 하고 있어 섬주민들의 교통수단 이용에 상당 한 불편을 초래하는 등의 사회적 문제로 대두되고 있다. 더욱이 이와 같은 조치는 지역적 편차나 사람마다 관측의 판단 기준이 상이하여 이를 객관적으로 정량화하지 못하고 있어 더욱 문제가 심화되고 있는 실정이다. 현재 각 항만의 VTS에서는 시정거리가 1km 미만인 경우 선박의 운항을 통제하고 있으며, 이 경우 저시정에 따른 해무 가시거리를 시정계 혹은 육안에 의한 목측(目測)에 의존하고 있을 정도로 객관적인 데이터 수집을 통한 평가에 있어서는 한계가 있다. 정부에서는 이와 같은 해양교통안전 저해요소를 해결하기 위한 일환으로 해 무 탐지 및 예측을 위한 해양기상신호표지 및 해상안개관측망을 구축하여 운용하고 있으나, 국지적으로 발생하는 해무를 관측하기 위한 시스템은 매우 부족한 현실적 어려움에 놓여있다. 이에 따라 본 논문에서는 해상에서의 저시정으로 인해 발생하고 있는 여러 사회적 문 제를 해결하기 위한 국내․외 정책동향에 대해 살펴보고, 이와 관련한 일반국민 및 현장 이해관계자의 인식 정도를 조사․분석하여 해무 에 따른 해상교통안전을 확보하기 위한 정부지원(해무 탐지 및 예측 기술을 기반으로 한 해상교통운영 체계 개발 등)의 필요성에 대한 기 초자료를 제공하고자 한다. 또한 이는 궁극적으로 해무로 인해 발생할 수 있는 해상안전 위험요소를 사전에 차단함으로써 보다 안정된 해상교통운영체계를 마련하는데 그 목적을 두고 있다.