검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 49

        41.
        2016.04 서비스 종료(열람 제한)
        Recently, an indirect displacement estimation method using data fusion of acceleration and strain (i.e., acceleration-strain-based method) has been developed. This paper proposes an improved displacement estimation method that can be applied to more general types of bridges by building the mapping using the finite element model of the structure. An experimental validation of the proposed method was carried out on a prestressed concrete girder bridge, and the method provides the best estimate for dynamic displacements.
        42.
        2015.04 서비스 종료(열람 제한)
        This paper presents a laboratory validation for a Finite Element model updating method using moving vehicle input-deflection output measurements. In conventional FE model updating, a few natural frequencies measured from field experiments have been used to update the FE model based on the assumption that the mass matrix is known accurately. The proposed approach can update the stiffness matrix without the assumption by using static input-output measurements and can even update the mass matrix by using a few natural frequencies obtained from dynamic measurements. Laboratory experiments were carried out for a scaled model of Samseung Bridge located in the test road of Korea Highway Corporation. For a simplicity of experiments, a mass (11kgf) was located in four different locations on the deck and two deflections were measured by laser displacement meters: one at the center girder, and the other in at the outer girder, both in mid-span. Results showed that the proposed methods was capable to estimate Young's Modulus and the mass density of the model bridge accurately while natural-frequency-based updating may result in significant error when higher modes (2nd, 3rd) were used.
        43.
        2015.04 서비스 종료(열람 제한)
        This study proposes a FE model updating strategy based on data fusion of acceleration and angular velocity. The use of acceleration and angular velocity gives richer information than the sole use of acceleration, allowing the enhanced performance particularly in determining the boundary conditions. A numerical simulation is presented to demonstrate the proposed FE model updating approach using the data fusion.
        44.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        The finite element (FE) model updating is a commonly used approach in civil engineering, enabling damage detection, design verification, and load capacity identification. In the FE model updating, acceleration responses are generally employed to determine modal properties of a structure, which are subsequently used to update the initial FE model. While the acceleration-based model updating has been successful in finding better approximations of the physical systems including material and sectional properties, the boundary conditions have been considered yet to be difficult to accurately estimate as the acceleration responses only correspond to translational degree-of-freedoms (DOF). Recent advancement in the sensor technology has enabled low-cost, high-precision gyroscopes that can be adopted in the FE model updating to provide angular information of a structure. This study proposes a FE model updating strategy based on data fusion of acceleration and angular velocity. The usage of both acceleration and angular velocity gives richer information than the sole use of acceleration, allowing the enhanced performance particularly in determining the boundary conditions. A numerical simulation on a simply supported beam is presented to demonstrate the proposed FE model updating approach.
        45.
        2014.10 서비스 종료(열람 제한)
        This study proposes a FE model updating strategy based on data fusion of acceleration and angular velocity. The use of acceleration and angular velocity gives richer information than the sole use of acceleration, allowing the enhanced performance particularly in determining the boundary conditions. A numerical simulation is presented to demonstrate the proposed FE model updating approach using the data fusion.
        47.
        2014.02 서비스 종료(열람 제한)
        복합소재는 가벼운 중량과 높은 비강성 및 비강도의 장점을 갖는다. 본 연구에서는 고성능 방재를 위하여 층간 분리 손상을 갖는 복합소재 구조에 대한 유한 요소 모델링을 엄밀한 고차항 판 이론에 근간하여 수행하였다. 3차원의 층간분리 현상을 절점당 7개의 자유도를 갖는 2차원 유한요소로 정식화하여 층간분리영역 경계에서의 변위를 일치시키기 위한 변환기법을 적용하였다. 유한요소 정식화 과정에서, 본 연구에서는 다음과 같은 영역에서의 세가지 타입의 요소를 적용하였다. (1) 층간분리가 일어나지 않은 영역 (2) 층간분리가 일어난 영역에서의 요소 (3) 층간분리가 시작되는 경계 영역에서의 요소. 층간분리 영역은 동일한 위치에서 층간분리의 윗부분 요소와 아랫 부분 요소로 구분하여 적용하였다.
        48.
        2013.04 서비스 종료(열람 제한)
        In recent year, a reduction of the damage to nonstructural components such as piping, ceiling, mechanical and electrical equipments or an improvement on the performance of nonstructural components has emerged as a key area of research. Therefore, the primary objective of this study was to evaluate and understand the seismic performance of the complex piping system such as a T-joint connection. Furthermore, it was targeted on evaluating the Finite Element (FE) Model of the T-joint connection based on moment-rotation relationship of the experimental tests. The results of FE analysis by OpenSees were in a good agreement with the experimental test result till the failure point in both models.
        49.
        2010.11 KCI 등재 서비스 종료(열람 제한)
        철근콘크리트 보의 휨 및 전단파괴 예측을 위한 철근콘크리트 부재의 3차원 유한요소모델을 개발하였다. 다축구속응력 하에서의 콘크리트의 연성거동을 보다 정확히 예측하기 위해 변형률 공간에서의 콘크리트 파괴기준을 제시하였다. 3축하에서의 콘크리트 균열거동을 위해 균열발생 후 인장연화거동, 골재맞물림 및 다우얼효과를 고려한 균열면 전단전달특성을 고려토록 하였다. 휨 및 전단 파괴 양상을 갖는 보 시험체와의 비교 연구를 통하여 본 유한요소 모델은 저보강보의 연성 휨 파괴 뿐만 아니라 전단보강되지 않은 철근콘크리트 보의 취성 전단 파괴 양상을 갖는 부재의 거동 예측에도 유효한 것으로 판단되었다.
        1 2 3