In this paper, the boom of a 30m class refracted insulation with outrigger on aerial elevating work platform is modeled as 3D CAD program of CATIA. The static and dynamic analyses are performed by using ANSYS and ADAMS programs, respectively. The refracted insulation boom uses acetal and the composite boom for insulation. And the composite insulation boom is modeled by using ACP (Ansys Composite Prepost) of ANSYS program. In order to analyze the durability of refracted insulation boom, the static analysis is performed and each analyzed part is stored as =MNF-type flexible body model. The dynamic analysis is performed with ADAMS by using the flexible model. As the result, these analyzes clarify the structural stability and dynamic durability (hot spot) of the refracted insulation boom.
In this paper, our aim is to develop a simulation model for Multi-joint demolition water vehicle. 3D model of vehicle is developed with CATIA. The rigid simulation model is built in ADAMS and the flexible simulation models are developed using ADAMS and ANSYS. The combination of the both ADAMS and ANSYS can improve the precision of system simulation. The rigid model with rigid multi-slide booms and rigid refracting booms, the hybrid model with flexible multi-slide booms and rigid refracting booms, and a flexible model with flexible multi-slide booms and flexible refracting booms are considered. The simulation analysis shows a good performance, and valuable results we are interested in are obtained.
대립계 포도 비가림하우스에 부착된 일체형 방풍벽과 노지에 설치된 분리형 방풍벽의 구조 안전성을 설계풍속 30.9m·s-1와 50m·s-1 조건에서 각각 분석하였다. 비닐하우스 부착형 방풍벽의 경우, 방풍벽을 설치했을 때 방풍벽의 경사각이 측면부의 유동분포에 미미한 변화를 주어 측면부가 받는 풍압면적이 다소 감소하는 것으로 나타났으나 큰 차이를 보이지는 않았다. 그러나 구조강도 측면에서는 방풍벽 설치를 위한 부가적인 파이프 투입 효과로 약 11%정도 구조 안전성이 향상되는 것으로 분석되었다. 주기둥 간격이 3m인 분리형 방풍벽의 경우,대형 태풍수준인 50m·s-1에서 구조적으로 불안정한 것으로 나타났으며 분리형 방풍벽의 이론적 고찰 결과와 해석 결과와는 큰 차이를 보여 3차원으로 구성된 구조물의 2차원 모델 시 그 정확성에 한계가 있음을 알 수 있었다. 추후 분리형 방풍벽의 효용성을 증대하기 위하여 최적 파이프 규격 설정에 관한 세부적인 연구가 필요할 것으로 판단되며 비닐하우스 부착형 방풍벽의 경우, 태풍으로 인한 비닐하우스 피해 발생 시 정밀한 피해실태 조사를 통하여 분석 결과의 정확성을 향상시킬 수 있는 구조 안전성 분석 기법 개발에 관한 연구가 필요한 것으로 판단되었다.
The air bridge that connects an airplane with air terminal is important facilities that help people get in and out an airplane safely and conveniently. As the number of people who takes airplane has been increasing, an unexpected accident or a disorder on an air bridge can lead to the loss of passenger's lives or a great damage of airplane. This paper suggests a method to secure the safety of an air bridge.
In this study, a contact node and a penalty spring were introduced at the bottom of the contact spring, and the track irregularity effect was implemented. Through this present approach, the non-linearity of the contact spring can be expressed using non-linear spring elements of ANSYS itself. The applicability of the improved analysis technique has been verified through various demonstrated cases. A stable solution was obtained even for a problem where the contact spring’s non-linearity changed rapidly.