검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 556

        41.
        2021.06 구독 인증기관 무료, 개인회원 유료
        본 연구는 도시경쟁력 강화 차원에서 진행되고 있는 문화기반 도시재생의 개념 및 지역정체성과의 관계성에 대하여 살펴보고 국내 주요 도시들의 사례를 연구하여 문화기 반 도시재생이 지역의 정체성 형성 및 활성화에 미친 효과가 있는지를 규명하여 새롭게 도시재생을 추진하는 국내 도시들에 대한 적용가능성 및 시사점을 도출하고자 하였다. 이를 위한 연구방법으로는 기존의 문헌들을 검토하고, 국내 문화도시 및 문화관광축제 로 선정된 광주광역시 동구, 충청북도 청주시, 부산광역시에서 실시한 문화기반 도시재생 의 성공사례를 분석하였다. 연구결과, 문화기반 도시재생은 지역의 정체성 형성 및 활성화에 유의미한 영향을 미 쳤으며, 문화기반 도시재생전략이 성공적으로 진행되기 위해서는 물리적인 환경 개선효 과 및 가시적인 경제적 효과보다는 지역주민의 참여 및 도시이미지 개선 등의 사회적 효과에 집중하여 이를 극대화할 수 있는 전략을 마련해야 하는 것으로 나타났다. 따라서 앞으로 추진되는 문화기반 도시재생은 적극적인 지역 주민참여 및 지역의 문화 · 역사에 대한 관심을 바탕으로 도시의 자생력을 강화하고, 지역의 어메니티 증진을 위한 환경조성 과 유휴 공간 및 근대산업유산을 활용한 문화시설조성 등을 위한 문화기반 도시재생전략 이 필요하다.
        5,700원
        47.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We use vdW-corrected density functional theory (DFT) calculations with additional electron distribution correction to study the water binding chemistry of an Au nanoparticle supported on CeO2(111) with a linear step-edge. The initial structural model of Au/CeO2 used for DFT calculations is constructed by stabilizing a Au9 nanoparticle at the linear step-edge on a CeO2(111) slab. The calculated binding energy of a water molecule clearly shows that the interfacial site between Au and CeO2 binds water more strongly than the binding sites at the surface of Au nanoparticle. Subsequent water dissociation calculation result shows that the interface-bound water can be relatively easily dissociated into–OH and –H, providing a hydroxyl group that can be utilized as an oxygen source for CO oxidation. Based on the low dissociation energy of the interface bound water molecule, we suggest that the water at the Au-CeO2 interface can facilitate further oxidation of Au-bound CO. Our results point out that Au-CeO2 interface-bound water is beneficial for low-temperature oxidation reactions such as the water-gas shift reaction or preferential CO oxidation reaction.
        4,000원
        48.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study evaluates the radioactivity of concrete waste that occurs due to large amounts of decommissioned nuclear wastes and then determines the surface dose rate when the waste is packaged in a disposal container. The radiation assessment was conducted under the presumption that impurities included in the bio-shielded concrete contain the highest amount of radioactivity among all the concrete wastes. Neutron flux was applied using the simplified model approach in a sample containing the most Co and Eu impurities, and a maximum of 9.8×104 Bq·g−1 60Co and 2.63×105 Bq·g−1 152Eu was determined. Subsequently, the surface dose rate of the container was measured assuming that the bio-shield concrete waste would be packaged in a newly developed disposal container. Results showed that most of the concrete wastes with a depth of 20 cm or higher from the concrete surface was found to have less than 1.8 mSv·hr−1 in the surface dose of the new-type disposal container. Hence, when bio-shielded concrete wastes, having the highest radioactivity, is disposed in the new disposal container, it satisfies the limit of the surface dose rate (i.e., 2 mSv·hr−1) as per global standards.
        4,000원
        49.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: A hip fracture may occur spontaneously prior to the hip impact, due to the muscle pulling force exceeding the strength of the femur. Objects: We conducted falling experiments with humans to measure the activity of the hip muscles, and to examine how this was affected by the fall type. Methods: Eighteen individuals fell and landed sideways on a mat, by mimicking video-captured real-life older adults’ falls. Falling trials were acquired with three fall directions: forward, backward, or sideways, and with three knee positions at the time of hip impact, where the landing side knee was free of constraint, or contacted the mat or the contralateral knee. During falls, the activities of the iliopsoas (Ilio), gluteus medius (Gmed), gluteus maximus (Gmax) and adductor longus (ADDL) muscles were recorded. Outcome variables included the time to onset, activity at the time of hip impact, and timing of the peak activity with respect to the time of hip impact. Results: For Ilio, Gmed, Gmax, and ADDL, respectively, EMG onset averaged 292, 304, 350, and 248 ms after fall initiation. Timing of the peak activity averaged 106, 96, 84, and 180 ms prior to the hip impact, and activity at the time of hip impact averaged 72.3, 45.2, 64.3, and 63.4% of the peak activity. Furthermore, the outcome variables were associated with fall direction and/or knee position in all but the iliopsoas muscle. Conclusion: Our results provide insights on the hip muscle activation during a fall, which may help to understand the potential injury mechanism of the spontaneous hip fracture.
        4,000원
        50.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biomass porous carbons derived from Laminaria japonica were prepared by KOH and H3PO4 activation methods, respectively. The results indicated that the chemical activation had an apparent effect on the molecular framework and space of materials. To enhance the selective adsorption for organic acids, biomass carbons were modified by dopamine combined with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane. The SEM and BET results illustrated the effect of the chemical activation approach on the morphology and porous texture. The biomass porous carbon using KOH activation method had the highest surface area (up to 1558 m2/ g). Compared with unmodified materials, the modified materials showed higher adsorption capacity for organic acids (27.90 μg/mL for chlorogenic acid and 25.47 μg/mL for caffeic acid). It was suggested that modification of porous carbons might be a viable pathway to increase the specific adsorption affinity and efficiency for organic acids in dried jujube samples.
        4,000원
        51.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To meet the increased performance and cost requirements of commercial supercapacitor, a N and O self-doped hierarchical porous carbon is fabricated via a green and simple self-activation route utilizing leaves of wild hollyhock as raw materials. Comparing to commercial activated carbon, the reported material exhibits some marked merits, such as simple and green fabrication process, low cost, and superior capacitance performance. The specific surface area of the obtained N and O codoped hierarchical porous carbon arrives 954 m2 g−1, and the content of the self-doped nitrogen and oxygen reaches 2.64 at.% and 7.38 at.%, respectively. The specific capacitance of the obtained material reaches 226 F g− 1 while the specific capacitance of the symmetric supercapacitor arrives 47.3 F g− 1. Meanwhile, more than 90.3% of initial specific capacitance is kept under a current density of 20 A g− 1, and no arresting degradation is observed for capacitance after 5000 times cycle, perfectly demonstrating the excellent cycle and rate capability of the obtained material. The obtained N and O co-doped hierarchical porous carbon are expected to be an ideal substitution for commercial activated carbon.
        4,200원
        52.
        2020.12 구독 인증기관 무료, 개인회원 유료
        Glial cells, including astrocytes and microglia, interact closely with neurons and modulate pain transmission, particularly under pathological conditions. In this study, we examined the excitability of substantia gelatinosa (SG) neurons of the spinal dorsal horn using a patch clamp recording to investigate the roles of microglial activation in the nociceptive processes of rats. We used xanthine/xanthine oxidase (X/XO), a generator of superoxide anion (O2∙–), to induce a pathological pain condition. X/XO treatment induced an inward current and membrane depolarization. The inward current was significantly inhibited by minocycline, a microglial inhibitor, and fluorocitrate, an astrocyte inhibitor. To examine whether toll-like receptor 4 (TLR4) in microglia was involved in the inward current, we used lipopolysaccharide (LPS), a highly specific TLR4 agonist. The LPS induced inward current, which was decreased by pretreatment with Tak-242, a TLR4-specific inhibitor, and phenyl N-t-butylnitrone, a reactive oxygen species scavenger. The X/XO-induced inward current was also inhibited by pretreatment with Tak-242. These results indicate that the X/XO-induced inward current of SG neurons occurs through activation of TLR4 in microglial cells, suggesting that neuroglial cells modulate the nociceptive process through central sensitization.
        4,000원
        53.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Shoulder horizontal abduction in the prone position (SHAP) has been reported as an effective exercise to strengthen the lower trapezius. However, the effects of pre-emptive scapular posterior tilt on scapular muscle activity and scapulohumeral movements during SHAP have not been examined. Objectives: To examine the effect of the addition of scapular posterior tilt on muscle activity of the trapezius and posterior deltoid, and scapular posterior tilt and shoulder horizontal abduction, during SHAP. Design: Cross-sectional study. Methods: Fifteen healthy male subjects performed two types of SHAP: general and modified SHAP (SHAP combined with pre-emptive scapular posterior tilt). To perform modified SHAP, pre-emptive scapular posterior tilt training was performed prior to the modified SHAP. Muscle activity of the middle and lower trapezius and posterior deltoid, and the amount of scapular posterior tilt and shoulder horizontal abduction, were measured during two types of SHAP. Results: Muscle activity of the lower trapezius and scapular posterior tilt was significantly increased during the modified SHAP, while muscle activity of the posterior deltoid and the amount of shoulder horizontal abduction were significantly decreased. However, the middle trapezius muscle activity did not change during the modified SHAP. Conclusion: The SHAP with pre-emptive scapular posterior tilt can be useful to strengthen the lower trapezius.
        4,000원
        54.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기계화학적 활성화 된 스카치테이프가 금속 이온 수용액에서 유발하는 자발적 금속 나노입자 필름 형성의 구동력과 그 크기를 전기화학적 방법으로 분석했다. 은 필름이 형성된 테이프를 질산에 녹이고, 완충용액과 섞어 전기화학 측정용 샘플을 준비했다. 양극 벗김 전압전류법의 피크 신호를 통해, 은 입자의 자발적 환원에 소모된 전하량을 측정했다. 이를 검정 곡선에 대입하여, 환원된 은의 양을 구했다. 그 결과 은의 양이 선행 연구 대비 106배 많은 점, 수용액에서 전하를 가진 이온들의 짧은 수명을 참고하여, 자발적 반응의 구동력을 라디칼로 결론 냈다.
        4,000원
        1 2 3 4 5