Radioactive wastes that are generated as a result of operating NPPs, contain 63Ni and 59Ni that should be analyzed in accordance with the notice of Nuclear Safety and Security Commission (NSSC) for the acceptance of Korea Radioactive Waste Agency (KORAD). Analyzing 63Ni and 59Ni has few challenges to determine activities of each nuclide in radioactive waste sample that contains both nuclides. As is well known, 63Ni can be analyzed by liquid scintillation counter (LSC) detecting its emitted beta rays, however, beta rays emitted from 59Ni are overlapped on the spectrum. Therefore, to discriminate those two nuclides, spectrum channel should be divided according to its dedicating part of the spectrum. For instance, 59Ni contribute to spectrum channel 30–250, on the other hand, 63Ni contributes to spectrum channel 30–450. In other word, 63Ni solely can be analyzed on the channel from 260 to 450. To analyze both 63Ni and 59Ni using this channel division method, detection efficiency must be measured in advance; efficiency of 63Ni and 59Ni at ch. 30–250, and efficiency of 63Ni at ch. 260–450, then the activity can be calculated using the corresponding efficiency. In this study, for verifying the feasibility of channel division method, 5 simulated samples were prepared with different ratio of 63Ni/59Ni. The ratio varies as 1, 2, 10, 20 and 100 spiking standard source of 63Ni and 59Ni. Each sample was mixed with scintillation cocktail and detected for 90 minutes by LSC (300SL, Hidex) after the stabilization of solutions. As a result, calculated 63Ni activities for all sample were averaged as 97% of spiked activity. However, calculated 59Ni activity were 101%, 103%, 128%, 140%, 260%, respectively. The result indicates that 59Ni cannot be discriminated by channel division method when it exists in the sample with high 63Ni over 10 times then 59Ni such as radioactive waste sample. However, the results also show that the channel division method for analyzing 63Ni activity was successful verifying it can determine the activity of 63Ni regardless of the affect of 59Ni on the spectrum.
Winged scapular (WS) causes muscle imbalance with abnormal patterns when moving the arm. In particular, the over-activation of the upper trapezius (UT) and decrease in activity of the lower trapezius (LT) and serratus anterior (SA) produce abnormal scapulohumeral rhythm. Therefore, the SA requires special attention in all shoulder rehabilitation programs. In fact, many previous studies have been devoted to the SA muscle strength training needed for WS correction. Objects: The purpose of this study was to investigate the effect of shoulder girdle muscle and ratio according to the angle of shoulder abduction and external weight in supine position. Methods: Twenty three WS patients participated in this experiment. They performed scapular protraction exercise in supine position with the weights of 0 ㎏, 1 ㎏, 1.5 ㎏, and 2 ㎏ at shoulder abduction angles of 0˚, 30˚, 60˚, and 90˚. The angle and weight applications were randomized. Surface electromyography (EMG) was used to collect the EMG data of the SA, pectoralis major (PM), and UT during the exercise. The ratio of PM/SA and UT/SA was confirmed. Two-way repeated analyses of variance were used to determine the statistical significance of SA, PM, and UT and the ratios of PM/SA and UT/SA. Results: There was a significant difference in SA according to angle (p<.05). Significant differences were also identified depending on the angle and weight (p<.05). The angle of abduction at 0˚, 30˚ and weight of 2 ㎏ showed the highest SA activity. However, there was no significant difference between PM and UT (p>.05). There was a significant difference between PM/SA and UT/SA in ratio of muscle activity according to angle (p<.05). Significant differences were found at PM/SA angles of 30˚, 60˚ and 90˚ (p<.05). For UT/SA, significant difference was only observed at 90˚ (p<.05). Conclusion: Based on the results of this study, in order to strengthen the SA, it was found to be most effective to use 1 and 1.5 ㎏ weights with abduction angles of 0˚ and 30˚ at shoulder protraction in supine position.
The aim of this study was to compare the activity of the upper trapezius (UT) and serratus anterior (SA) and ratio of UT to SA during shoulder elevations. Ten subjects with UT pain (UTP) and 13 subjects without UTP participated in this study. Subjects with a UTP of over five in a pain intensity visual analogue scale (0-10 ㎝) for more than 2 months and latent myofascial trigger points (MTrPs) in the UT muscle were included in the UTP group. Electromyography (EMG) data of UT and SA at 1st and 10th elevations were analyzed. Two-way repeated analyses of variance were used to compare the EMG activity of UT and SA and the ratio of UT to SA during shoulder elevations between groups with and without UTP. There was a significant increase in UT/SA ratio in the group with UTP compared to the group without UTP (p=.01). The activity of UT and SA measured at the 10th elevation was significantly greater than that in the first elevation (p<.05). The activity of SA was significantly greater in the group without UTP than the group with UTP (p=.03). However, there was no significant difference between groups with and without UTP in terms of UT activity (p=.28). These results indicate that UTP may have relevance to the increased muscle activity ratio of UT to SA during shoulder elevations.
국내 경수로원전 1차 냉각재와 중저준위 방사성폐기물 내 핵종방사능비에 대한 유관성을 검토하고자 특수하게 제작된 RCS sampling kit를 이용하여 원전 정상운전기간 동안 핵종을 포집하였다. 시료채취는 경수로형 전 원자력 발전소를 대상으로 2004년과 2005년에 걸쳐 시료를 채취하였고, 방사화학적 방법인 시료 전처리 및 핵종분리를 통하여 핵종 방사능을 분석하였다. RCS sampling kit 내 필터와 수지에서 분석된 핵종 방사능비는 각각 2.32-2와 7.3E-1을 보였으며, 동일주기 내 발생된 중 저준위 방사성폐기물인 농축폐액, 폐수지, 잡고체시료 내 핵종 방사능비는 각각 6.3E-1, 6.7E-1 및 5.7E-2로 시료유형 에 따라 1차 냉각재와 유사성을 갖는 것으로 확인하였다.
This research and development analysis provides numerical analysis techniques that can be used conveniently to determining the safety of the current state and to predict the stability in the future. It also seeks to present algorithms of back analysis to develop unified management system for control, prediction, coordination, and information modeling that can reasonably handle appropriate responses to structural behavior at project sites and design changes.
In this study, we evaluated the whitening activity of prethanol A and water extracts from Abeliophyllum distichum Nakai. The extracts were prepared using 0, 50, 70, and 100% prethanol A at 121℃, 1.2 atm for 15 minutes. To confirm effective extraction, the acteoside content of each extract was analyzed with the HPLC-PDA method. The antioxidant activity was evaluated using DPPH and ABTS scavenging activity assays, and the whitening activity was evaluated based on inhibitory activities on the protein and mRNA expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), tyrosinase-related protein 2 (TRP-2), and microphthalmia-associated transcription factor (MITF) in B16 F10 cells. Each extract showed strong antioxidant and whitening activity. IC50 values of antioxidant activity from each extract were in order of 100%, 70%, 50%, and 0%. In addition, whitening activity inhibited the protein and mRNA expression of melanin synthesis factor, following the same pattern as antioxidant activity. In conclusion, water and prethanol A extracts of A. distichum showed effective antioxidant and whitening activity and are thus considered to be valuable materials for whitening cosmetics. The results of this study will also provide basic data for the safe and efficient production of A. distichum as a cosmetic material.