The separation efficiency of nuclides in molten salt systems was investigated, with a focus on the influence of apparatus configuration and experimental conditions. A prior study revealed that achieving effective Sr separation from simulated oxide fuel required up to 96 hours, reaching a separation efficiency of approximately 90% using a static dissolution reaction in a porous alumina basket. In this study, we explored the impact of agitation on improving Sr separation efficiency and dissolution rates. The simulated oxide fuel composition consisted of 2wt% Sr, 3wt% Ba, 2wt% Ce, 3wt% Nd, 3wt% Zr, 2wt% Mo, and 89wt% U. To quantify the Sr concentration in the salt, we utilized ICP analysis after salt sampling via a dip-stick technique. Furthermore, we conducted ICPOES analysis over a 55-hour duration to assess the separated nuclides. Complementing these analyses, SEM and XRD investigations were performed to validate the crystal structure and morphology of the oxide products.