검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 91

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.
        4,000원
        2.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lightweight steel is a crucial material that is being actively studied because of increased carbon emissions, tightening regulations regarding fuel efficiency, and the emergence of UAM, all of which have been recently labeled as global issues. Hence, new strategies concerning the thickness and size reduction of steel are required. In this study, we manufacture lightweight steel of the Fe-Mn-Al-C system, which has been recently studied using the DED process. By using 2.8 wt.% low-Mn lightweight steel, we attempt to solve the challenge of joining steel parts with a large amount of Mn. Among the various process variables, the laser scan power is set at 600 and 800W, and the laser scan speed is fixed at 16.67 mm/s before the experiments. Several pores and cracks are observed under both conditions, and negligibly small pores of approximately 0.5 μm are observed.
        4,000원
        3.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 oC. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 oC and -196 oC exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.
        4,000원
        4.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a durability study is presented to enhance the mechanical properties of an Fe-Si-Al powderbased magnetic core, through the addition of graphite. The compressive properties of Fe-Si-Al-graphite powder mixtures are explored using discrete element method (DEM), and a powder compaction experiment is performed under identical conditions to verify the reliability of the DEM analysis. Important parameters for powder compaction of Fe-Si-Algraphite powder mixtures are identified. The compressibility of the powders is observed to increase as the amount of graphite mixture increases and as the size of the graphite powders decreases. In addition, the compaction properties of the Fe-Si-Al-graphite powder mixtures are further explored by analyzing the transmissibility of stress between the top and bottom punches as well as the distribution of the compressive force. The application of graphite powders is confirmed to result in improved stress transmission and compressive force distribution, by 24% and 51%, respectively.
        4,000원
        5.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 oC for 1 hour. The specimens annealed at temperatures up to 300 oC show a deformation structure; however, from 350 oC they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338MPa after annealing at 400 oC. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.
        4,000원
        6.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Fe-22wt.%Cr-6wt.%Al foams were fabricated via the powder alloying process in this study. The structural characteristics, microstructure, and mechanical properties of Fe-Cr-Al foams with different average pore sizes were investigated. Result of the structural analysis shows that the average pore sizes were measured as 474 μm (450 foam) and 1220 μm (1200 foam). Regardless of the pore size, Fe-Cr-Al foams had a Weaire-Phelan bubble structure, and α-ferrite was the major constituent phase. Tensile and compressive tests were conducted with an initial strain rate of 10−3 /s. Tensile yield strengths were 3.4 MPa (450 foam) and 1.4 MPa (1200 foam). Note that the total elongation of 1200 foam was higher than that of 450 foam. Furthermore, their compressive yield strengths were 2.5 MPa (450 foam) and 1.1 MPa (1200 foam), respectively. Different compressive deformation behaviors according to the pore sizes of the Fe-Cr-Al foams were characterized: strain hardening for the 450 foam and constant flow stress after a slight stress drop for the 1200 foam. The effect of structural characteristics on the mechanical properties was also discussed.
        4,000원
        7.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C- 3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.
        4,000원
        8.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the effect of grain size on the damping capacity of the Fe-26Mn-4Co-2Al damping alloy. α’ and ε-martensite were formed by cold working, and these martensites were formed with a specific direction and surface relief. With an increase in grain size, the volume fraction of α’ and ε-martensite increased by decrement the austenite phase stability. This volume fraction more rapidly increased in cold-rolled specimen than in the specimen that was not cold-rolled. The damping capacity also increased more with the augmentation an increased grain size and more rapidly increased in cold-rolled specimen than in the specimen that was not cold rolled. The effect of grain size on the damping capacity was larger in the cold-rolled specimen than the specimen that was not cold-rolled. Damping capacity linearly increased with an increase in volume fraction of ε-martensite. Thus, the damping capacity was affected by the ε-martensite.
        4,000원
        9.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to 400 °C for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over 300 °C. Electric conductivity increased with increasing temperature up to 250 °C, but no significant change was observed above 300 °C. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at 350 oC is the most suitable for the wire drawn Al alloy electrical wire.
        4,000원
        10.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of Y2O3 particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and 1100 oC for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at 1100 oC showed a more homogeneous microstructure. In the case of sintering at 1100 oC, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.
        4,000원
        11.
        2017.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogencharged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C- 1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen
        4,000원
        12.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the microstructural and magnetic property changes of DyH2, Cu + DyH2, and Al + DyH2 diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusiontreated magnets increases with increasing heat treatment temperature except at 910oC, where it decreases slightly. Moreover, at 880oC, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed DyH2-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only DyH2. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of 790-880oC. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed DyH2, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic (Nd, Dy)2Fe14B phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.
        4,000원
        13.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The influence of NiCrAlY bond coating on the adhesion properties of an Fe thermal coating sprayed on an Al substrate was investigated. By applying a bond coat, an adhesion strength of 21MPa was obtained, which was higher than the 15.5MPa strength of the coating without the bond coat. Formation of cracks at the interface of the bond coat and the Al substrate was suppressed by applying the bond coat. Microstructural analysis of the coating interface using EBSD and TEM indicated that the dominant bonding mechanism was mechanical interlocking. Mechanical interlocking without crack defects in the coating interface may improve the adhesion strength of the coating. In conclusion, the use of an NiCrAlY bond coat is an effective method of improving the adhesion properties of thermal sprayed Fe coatings on Al substrates.
        4,000원
        14.
        2016.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the effect of deformation induced martensite on the damping capacity of Fe-26Mn-4Co-2Al damping alloy. α‘ and ε-martensite were formed by cold working, and; deformation induced martensite was formed with according to the specific direction and the surface relief. With an increasing degree of cold rolling, the volume fraction of α‘-martensite increased rapidly, while the volume fraction of ε-martensite decreased after rising to a maximum value at a specific level of cold rolling. Damping capacity was increased, and then decreased with an increasing of the degree of cold rolling. Damping capacity was influenced greatly by the volume fraction of ε-martensite formed by cold working, but the effect of the volume fraction of α‘-martensite have a actually on effect on the damping capacity.
        4,000원
        15.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Titanium has many special characteristics such as specific high strength, low elastic modulus, excellent corrosion and oxidation resistance, etc. Beta titanium alloys, because of their good formability and strength, are used for jet engines, and as turbine blades in the automobile and aerospace industries. Low cost beta titanium alloys were developed to take economic advantage of the use of low-cost beta stabilizers such as Mo, Fe, and Cr. Generally, adding a trace of boron leads to grain refinement in casted titanium alloys due to the pinning effect of the TiB phases. This study analyzed and evaluated the microstructural and mechanical properties after plastic deformation and heat treatment in boron-modified Ti-2Al-9.2Mo-2Fe alloy. The results indicate that a trace of boron addition made grains finer; this refinement effect was found to be maintained after subsequent processes such as hot forging and solution treatment. This can effectively reduce the number of required manufacturing process steps and lead to savings in the overall cost as well as low-cost beta elements.
        4,000원
        16.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural analysis of a (α+β) Ti alloy was investigated to consider phase transformation in each step of thethermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated withsolid solution at 880oC, rolling at 880oC and annealing at 800oC. In the STQ state, the TAF microstructure was composedof a normal hcp α and metastable β phase. In a rolled state, it was composed of fine B2 precipitates in an α phase, whichhad high Fe segregation and a coherent relationship with the β matrix. Finally, in the annealing state, the fine B2 precipitateshad disappeared in the α phase and had gone to the boundary of the α and β phase. On the other hand, in a lower rollingtemperature of 704oC, the B2 precipitates were more coarse in both the α and the boundary of α and β phase. We concludedthat microstructural change affects the mechanical properties of formability including rolling defects and cracks.
        4,000원
        17.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability. The Fe-Cr-Al alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. And then many researches are developed the Fe-Cr-Al porous metals for exhaust gas filter, hydrogen reformer catalyst support and chemical filter. In this study, the Fe-Cr-Al porous metals are developed with Fe-22Cr-6Al(wt) powder using powder compaction method. The mean size of Fe-22Cr-6Al(wt) powders is about 42.69 μm. In order to control pore size and porosity, Fe-Cr-Al powders are sintered at 1200~1450oC and different sintering maintenance as 1~4 hours. The powders are pressed on disk shapes of 3 mm thickness using uniaxial press machine and sintered in high vacuum condition. The pore properties are evaluated using capillary flow porometer. As sintering temperature increased, relative density is increased from 73% to 96% and porosity, pore size are decreased from 27 to 3.3%, from 3.1 to 1.8 μm respectively. When the sintering time is increased, the relative density is also increased from 76.5% to 84.7% and porosity, pore size are decreased from 23.5% to 15.3%, from 2.7 to 2.08 μm respectively.
        4,000원
        19.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-finefecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid(0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing andsintering processes were conduced. In order to examine the effect of cell size (200 µm, 450 µm, 500 µm) in process,pre-samples were sintered for two hours at temperature of 1450˚C, in H₂ atmospheres. A 24-hour thermo gravimetricanalysis test was conducted at 1000˚C in a 79% N₂ + 21% O₂ to investigate the high temperature oxidation behavior ofpowder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased withincreasing cell size. In the 200 µm porous metal with a thinner strut and larger specific surface area, the depletion ofthe stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared withthe 450, 500 µm porous metals.
        4,000원
        20.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of , , , and , respectively, in atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at in a 79% +21% to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.
        4,000원
        1 2 3 4 5