검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 136

        1.
        2023.11 구독 인증기관·개인회원 무료
        Pyroprocessing is a crucial method for recovering nuclear fuel materials, particularly uranium and transuranic elements (TRU), through electrochemical reactions in a LiCl or LiCl-KCl molten salt system, which is highly stable medium at elevated temperatures. In the electrochemical reduction stage, actinide metal oxides are effectively transformed into their metallic forms and retained at the cathode within a molten LiCl-Li2O environment at 650°C. Simultaneously, oxygen ions (O2-) are generated at the cathode and then transported through the molten salt to be discharged at the anode, where they combine to form oxygen gas (O2) on the anode’s surface. One notable challenge in this electrochemical process is the generation of various byproducts during the anode oxide reduction step, including oxygen, chlorine, carbon dioxide, and carbon monoxide. Consequently, significant amounts of corrosion products tend to accumulate on the upper region of the anode’s immersion area over time. This report introduces a novel solution to mitigate corrosion-related challenges within the specified temperature range. We propose a selective oxidation treatment for the NiCrAl-based 214 Haynes alloy, involving exposure to 1,100°C in a reducing atmosphere. The objective is to stimulate the growth of protective α-Al2O3 scales on the alloy’s surface. The resulting oxide scales have undergone thorough characterization using SEM, EDS, and XRD techniques. The pre-grown alumina scale has demonstrated commendable adherence and thermal stability, even when subjected to a chlorine-oxygen mixed atmosphere at the specified temperature.
        2.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The influence of MgO addition on the densification and microstructure of alumina (Al2O3) was studied. Compacted alumina specimens were manufactured using ball-milling and one-directional pressing followed by sintering at temperatures below 1700oC. Relative density, shrinkage, hardness, and microstructure were investigated using analytical tools such as FE-SEM, EDS, and XRD. When the MgO was added up to 5.0 wt% and sintered at 1500oC and 1600oC, the relative density exhibited an average value of 97% or more at both temperatures. The maximum density of 99.2% was with the addition of 0.5 wt% MgO at 1500oC. Meanwhile, the specimens showed significantly lower density values when sintered at 1400oC than at 1500oC and 1600oC owing to the relatively low sintering temperature. The hardness and shrinkage data also showed a similar trend in the change in density, implying that the addition of approximately 0.5 wt% MgO can promote the densification of Al2O3. Studying the microstructure confirmed the uniformity of the sintered alumina. These results can be used as basic compositional data for the development of MgOcontaining alumina as high-dielectric insulators.
        4,000원
        4.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.
        4,000원
        5.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Under anoxic conditions, this study investigated removal of dissolved As(III) by Si and Al oxides including natural sand, chemically washed sand (silica), alumina, and activated alumina. Despite the similar surface area, natural sand showed greater extents of As(III) sorption than chemically washed sand. This was likely due to the high reactivity of Fe(oxyhydr)oxide impurities on the surface of natural sand. For both sands, As(III) sorption was the greatest at pH 7.1, in agreement with the weakly dissociating tendency of arsenous acid. Also, the least sorption was observed at pH 9.6. At basic pH, elevated silicate, which originated from the dissolution of silica in sands, would compete with As(III) for sorption. Due to the highest surface area, activated alumina was found to quantitatively immobilize the initially added As(III) (6.0×10−7 -2.0×10−5 M). Alumina showed As(III) sorption compared to or greater than chemically washed sand, although the former had less than 6% of the surface of area the latter. The greater reactivity of alumina than chemically washed sand can be explained by using the shared charge of oxygen.
        4,000원
        6.
        2022.05 구독 인증기관·개인회원 무료
        An elevated temperature is expected at the deep geological repository (DGR) due to the decay heat from spent nuclear fuel and the positive geothermal gradient. The resulting elevated temperature would change the aqueous speciation and surface complexation of uranium, which is the major component in spent nuclear fuel. Since sorption reactions of uranium species on natural minerals determine the extent of uranium retardation, in this work the temperature-dependent adsorption of hexavalent uranium, U(VI), was studied by choosing alumina as the basic component mineral for complex aluminosilicates. Time-resolved laser fluorescence spectroscopy (TRLFS) was used to assess the dissolved and adsorbed U(VI) species on γ-Alumina in the pH range of 6.5–9.0 at temperatures of 25 to 70°C. Initial concentrations of U(VI), carbonate and calcium were 89 μM, 25 mM, and 3.0 mM, respectively. The parallel factor analysis (PARAFAC) was used for chemical speciation by spectrum deconvolution. In addition, a separate solution system with higher U(VI) concentrations (0.1 mM, 1.0 mM) and carbonate concentration of 25 mM was studied with attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy for adsorbed species at 25°C. The electrophoretic mobility measurements were also conducted at 25°C to assess the coordination mechanism of adsorbed species at 25°C. The uranyl hydrolysis species and uranyl tricarbonato species coexist in solution at 25°C. At the same temperature, both species were found to be adsorbed. ATR-FTIR could confirm the adsorption of uranyl tricarbonato species at 25°C, and the electrophoretic mobility measurements suggested that the reaction mechanism is an inner-sphere coordination. However, in comparison with aqueous speciation at 25°C, at elevated temperatures the available pH range of uranyl tricarbonato species was narrow and that for uranyl hydrolysis species was wider. It was evident that two hydrolysis species are adsorbed at elevated temperatures, but no tricarbonato species. The enhanced U(VI) adsorption was observed with temperatures. This could result from the transition of dominance from the concurrent adsorption of uranyl hydrolysis species and uranyl tricarbonato species to two hydrolysis species. It was seen that the trend of enthalpy of adsorption was endothermic. Combining the present results with temperature-dependent adsorption studies on silica and aluminosilicates, a reliable SCM for the subsurface system can be proposed to explain U(VI) migration.
        7.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수처리 및 의약바이오 분야에서 유효물질 분리에 활용되고 있는 알루미나 중공사 분리막은 얇은 두께로 인해 취 급 및 적용시 쉽게 파괴되는 단점이 있기 때문에 분리막의 강도를 100 MPa 이상으로 향상시키기 위한 연구가 필요하다. 본 연구에서는 나노입자의 함량을 0, 1, 3, 5 wt%로 증가시켰을 때 제조된 중공사 분리막의 특성을 평가하였다. 그 결과, 나노입 자의 함량이 증가함에 따라 중공사 분리막의 강도는 79 MPa에서 115 MPa로 증가하였으며, 밀도는 1.76 g/m3에서 1.88 g/m3 으로 증가하였고 기공률과 평균기공크기는 각각 51%에서 48%로, 416 nm에서 352 nm로 감소한 것을 확인하였다. 스폰지구 조가 발달하고 스폰지구조의 기공크기가 향상된 알루미나 중공사 분리막은 100 MPa 이상으로 기계적 강도가 향상되었으며, 약 100000 GPU의 높은 질소 투과도 및 약 3000 L/m2h의 높은 물 투과도를 나타내었다. 따라서, γ-알루미나 나노입자를 소 결조제로 첨가하는 것은 α-알루미나 중공사 분리막의 기계적 강도를 효과적으로 증진시키고 높은 투과성능을 유지할 수 있 는 매우 유효한 방법임을 확인하였다.
        4,500원
        9.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지르코니아 복합체는 지르코니아 전구체, 알루미나 전구체, 그리고 유기 실란의 혼합물을 플라 스틱 기판 위에 코팅하여 졸 겔 공정과 저온의 광경화 과정, 그리고 열처리 공정 등 세 단계를 거쳐 합성하 였고, FT-IR과 XPS 분석을 통하여 지르코니아 전구체와 알루미나 전구체의 비율에 따라 합성된 복합체 내 Zr 원소와 Al 원소 비율이 일치함을 확인하였다. 코팅된 복합체는 파장이 420 nm 이상인 가시광선 영 역에서 96 % 이상의 투과도를 보였고, 기계적 강도는 연필 강도 9H 이상을 나타내었다. 특히 지르코니아 와 알루미나의 몰 비가 1:4의 비율의 복합 코팅제의 나노 압입 경도가 1.212 GPa로 가장 높은 것으로 확 인되었다.
        4,000원
        12.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 3D printing process provides a higher degree of freedom when designing ceramic parts than the conventional press forming process. However, the generation and growth of the microcracks induced during heat treatment is thought to be due to the occurrence of local tensile stress caused by the thermal decomposition of the binder inside the green body. In this study, an alumina columnar specimen, which is a representative ceramic material, is fabricated using the digital light process (DLP) 3D printing method. DTG analysis is performed to investigate the cause of the occurrence of microcracks by analyzing the debinding process in which microcracks are mainly generated. HDDA of epoxy acrylates, which is the main binder, rapidly debinded in the range of 200 to 500oC, and microcracks are observed because of real-time microscopic image observation. For mitigating the rapid debinding process of HDDA, other types of acrylates PETA, PUA, and MMA are added, and the effect of these additives on the debinding rate is investigated. By analyzing the DTG in the 25 to 300oC region, it is confirmed that the PETA monomer and the PUA monomer can suppress the rapid decomposition rate of HDDA in this temperature range.
        4,000원
        15.
        2020.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Two commonly used ceramics in molten salt research are alumina and mullite. The two ceramics were exposed to a combination of rare earth chlorides (YCl3, SmCl3, NdCl3, PrCl3, and CeCl3; each rare earth chloride of 1.8 weight percent) in LiCl-KCl at 773 K for approximately 13 days. Scanning electron microscopy with wave dispersion spectra was utilized to investigate a formation layer or deposition of rare earths onto the ceramic. Only the major constituents of the ceramics (Al, Si, and O2) were observed during the wave dispersion spectra. X-ray fluorescence was used as well to determine concentration changes in the molten salt as a function of ceramic exposure time. This study shows no evidence of ionic exchange or layer formation between the ceramics and molten chloride salt mixture. There are signs of surface tension effects of molten salt moving out of the tantalum crucible into secondary containment.
        4,000원
        16.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we report graphene composite membranes prepared by transfer of a layer of chemical vapor deposition graphene onto porous anodic alumina (AA) substrates with nominal pore size 20 and 30 nm, referred as 20AA and 30AA. The coated and uncoated substrates were characterized using optical and electron microscopy techniques. The bare substrates exhibited a smooth surfaces with a well-organized array of hexagonal pores, displaying an average pore size of 17 ± 3 (20AA) and 23 ± 3 nm (30AA). The scanning electron microscopy and atomic force microscopy analyses confirmed the successful transfer of graphene layer onto the target substrates. The molecular transport study was performed by introducing 0.5 M potassium chloride (KCl) and deionized water in a Side-bi-Side Franz diffusion cell. The graphene/20AA specimen blocked 66% ions transport, and graphene/30AA membrane about 64%. The ions blockage exceeded 90%, near the characteristics of defectfree graphene when the defects of the transferred graphene were sealed with Nylon 6,6. The results of this study suggest the potential use of graphene on AA substrates for water desalination and gas purification applications.
        4,200원
        17.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Small fishing vessels are manufactured using FRP. Various studies have been conducted to increase the strength of the composite material by mixing alumina powder with resin. Tensile tests and flexural strength tests are conducted to examine the effect of alumina powder on the strength of GFRP. In the current study, resin/alumina composites at different alumina contents (i.e., 0, 1, 5, and 10 vol%) have been prepared. The physical and mechanical properties of the prepared composites have been investigated. From the results, the tensile strength of the specimen with alumina powder mixed in at 10% shows the highest value of 155.66 MPa. The tensile strength of the specimen mixed with alumina powder increases with the amount of alumina powder impregnated. In the flexural strength test, the flexural strength of neat resin without alumina powder has a highest value of 257.7 MPa. The flexural modulus of ALMix-5 has a highest value of 12.06 GPa. Barcol hardness of ALMix- 10 has a highest value of 51. We show that alumina powder leads to decreasing cracks on the surface and decreasing length area of delamination.
        4,000원
        20.
        2018.11 구독 인증기관·개인회원 무료
        In the epoxy resin manufacturing process, carcinogenic ECH (epichlorohydrin), IPA (isopropanol) and Biphenol-A materials has been generally used. After the reaction, byproducts containing ECH/IPA/Water is remained along with final product. But, in the recovery process, ECH and IPA forming an azeotropic mixture with water containing feed solution at any temperature condition, the recovery of high purity ECH is difficult only by distillation. Therefore, pervaporation process could be suitable countermeasure due to its mild operation condition for separation of azeotropic mixtures at the point of energy and cost saving. In this study, Alumina-PVA composite membrane was prepared for pervaporation dehydration of ECH/IPA/Water feed mixtures and pervaporation performance and stability of the prepared composite membrane was identified.
        1 2 3 4 5