The object of this study is to feasibility assesment for co-digestion efficiency of food waste recycling wastewater(FWR) with thermal hydrolysis process dehydration cake (THP Sludge). As a result of THP pre-treatment experimental conditions to 160oC and 30 minutes, the solubility rate(conversion rate of TCOD to SCOD) of the THP sludge increased by 34%. And the bio-methane potential in the THP sludge increased by about 1.42 times from 0.230 to 0.328 m3 CH4/kg VS compared to the non-pre-treatment. The substrates of the co-digestion reactor were FWR and THP sludge at a 1:1 ratio. Whereas, only FWR was used as a substrate in the digestion reactor as a control group. The experimental conditions are 28.5 days of hydraulic retention time(HRT) and 3.5 kg VS/m3-day of organic loading rate(OLR). During the 120 days operation period, the co-digestion reactor was able to operate stably in terms of water quality and methane production, but the FWR digestion reactor deteriorated after 90 days, and methane production decreased to 0.233 m3 CH4/kg VS, which is 67% of normal condition. After 120 days of the experiment, organic loading rate(OLR) of co-digestion reactor was gradually increased to 4.5 kg VS/m3-day and operated for 80 days. Methane production during 80 days was evaluated to be good at the level of 0.349 m3 CH4/kg VS. As a result of evaluating the dehydration efficiency of the sludge before/after 150-180oC THP using a filter press, it was confirmed that the moisture content of the sludge treated before THP at 180oC was 75% and improved by 8% from 83-85% level. Therefore, it is expected that the co-digestion reactor of FWR and THP sludge will ensure stable treatment water quality and increase bio-methane production and reduction effect of dehydration sludge volume.
Food waste leachate (FWL) is a serious pollutant waste coming from the food waste recycling facilities in Korea. FWL has a high organic matter content and high COD to nitrogen (COD/N) ratio, which can disturb efficient methane production in the anaerobic digestion of FWL. In the present study a microalga, Clorella vulgaris (C.V), was used as co-substrate for the FWL anaerobic digestion in order to supply nutrients, decrease the COD/N ratio and increase its methane yield. Different co-digestion mixtures (COD/N ratios) were studied by using biochemical methane potential test and modified Gompertz equation for kinetic study. Mixed substrate of FWL and C. vulgaris in the co-digestion clearly showed more the biomethane yield than the sole substrates. The maximum methane production, 827.7 mL-CH4/g-VS added, was obtained for COD/N ratio of 24/1, whereas the highest improvement of methane yield was found for COD/N ratio of 15/1.
This study evaluated the biochemical methane potential (BMP) of primary sludge, secondary sludge, and food waste in batch anaerobic mono-digestion tests, and investigated the effects of mixture ratio of those organic wastes on methane yield and production rate in batch anaerobic co-digestion tests, that were designed based on a simplex mixture design method. The BMP of primary sludge, secondary sludge and food waste were determined as 234.2, 172.7, and 379.1 mL CH4/g COD, respectively. The relationships between the mixing ratio of those organic wastes with methane yield and methane production rate were successfully expressed in special cubic models. Both methane yield and methane production rate were estimated as higher when the mixture ratio of food waste was higher. At a mixing ratio of 0.5 and 0.5 for primary sludge and food waste, the methane yield of 297.9 mL CH4/g COD was expected; this was 19.4% higher than that obtained at a mixing ratio of 0.3333, 0.3333 and 0.3333 for primary sludge, secondary sludge, and food waste (249.5 mL CH4/g COD). These findings could be useful when designing field-scale anaerobic digersters for mono- and co-digestion of sewage sludges and food waste.
가죽 제조 산업의 현황을 살펴보면 가공에 사용되는 원료피의 50%가 폐기물로 발생되어 진다. 가죽 원료에서 많은 부분이 폐기물로 발생하기 때문에 해당 공정의 폐기물 처리와 함께 자원으로서의 활용적 측면이 함께 고려되어야한다. 하지만 현재 대부분의 피혁폐기물은 주로 매립과 소각 방법으로 처리되고 있어 보다 지속가능하고 환경 친화적인 처리 방법이 요구되고 있는 실정이다. 본 연구에 사용된 피혁폐기물은 가죽 제조 공정 중 탈모공정(Liming) 후에 발생하는 Pelt scrap으로, 주성분이 지질과 단백질로 구성되어 있어 혐기성 소화를 통한 처리 시 효율적인 메탄 생성 기질로 사용될 수 있다. 다만, 피혁폐기물은 pH와 C/N 비가 높아 혐기성 소화 시 메탄 생성 과정에 저해를 줄 수 있어 이에 대한 조절이 필요하다. 일반적으로 피혁폐기물의 pH는 12 부근으로 알려져 있으며, 혐기성소화 공정에서 기질의 pH가 6이하 또는 8.5이상인 경우 메탄 생성에 영향을 줄 수 있다. 이에 효율적인 피혁폐기물 처리와 메탄가스 생산을 위해서는 기질의 pH 조절이 필요하다. 본 연구에서는 피혁폐기물의 높은 pH를 혐기성소화에 알맞은 중성으로 조절해주기 위해 pH가 낮으면서 생분해도가 높은 음폐수를 통합 기질로 사용해 혐기성소화를 실시하였다. 실험에 사용된 피혁폐기물과 음폐수의 pH는 각각 12.4와 4.2였으며, 이를 VS기준 0.13:0.87의 비율로 혼합하여 혼합기질의 pH를 7.7로 만들었다. 250mL serum bottle에 하수슬러지 100mL를 식종하고 기질 1g VS를 주입하였고 35℃, 150rpm으로 유지되는 항온교반기에서 진행하였다. 기질 pH 조절에 의한 소화 성능 확인을 위해 피혁폐기물과 음폐수 단독소화를 실시하고, 이를 pH 7로 조절한 통합소화 조건과 비교하였다. 이때 소화성능은 유기물 감량과 바이오가스 생산량 및 메탄함량을 통해 평가하였다. 실험 결과, 단독 소화와 비교해 기질의 pH를 조절해 통합소화에서 바이오가스 생산량과 메탄 함량이 증대되는 경향을 보였다. 결론적으로 혐기성소화 시 기질 혼합을 통한 중성 pH 조성은 바이오가스 생산량과 메탄 함량의 증가에 영향을 주는 것으로 판단된다.
가죽제품 제조 산업으로부터 발생되는 피혁폐기물의 양은 투입되는 원료 가죽의 약 50%를 차지하는 것으로 알려져 있다. 그러나 이들 피혁폐기물은 적절한 처리 방법이 개발되지 않아 대부분 매립이나 소각을 통해 처리되고 있다. 특히, 매립이나 소각을 통한 처리는 단가가 높아 관련 산업의 경제성을 악화시키고 고형폐기물의 친환경적 처리 관점에서 문제점이 제기되고 있는 실정이다. 최근 화석연료를 대체하기 위한 신규에너지원의 중요성이 높아짐에 따라, 폐기물을 이용한 에너지화에 많은 연구가 진행되고 있으며, 피혁폐기물은 주로 단백질과 지질로 구성되어 있는 특성으로 인해 혐기성소화를 통한 바이오가스 생산이 가능한 것으로 알려져 있다. 그러나 일반적으로 알려져 있는 혐기성소화 공정의 최적 C/N 비 (20-30)를 고려할 때, 피혁폐기물의 높은 C/N비 (약 35)는 공정의 제한요소가 될 수 있다. 본 연구에서는 피혁폐기물과 음폐수를 통합하여 혐기성소화를 실시함으로써 기질의 C/N 비 조절이 혐기성소화 효율에 미치는 영향을 관찰하였다. 기질의 C/N 비 조절을 통한 혐기성소화 효율의 변화는 BMP (Biochemical methane potential) test를 약 40일간 진행하였으며, 바이오가스 발생량을 비교하였다. 실험은 경기도 동두천시에 위치한 가죽제품 제조업체로부터 수거된 pelt scrap과 양주시에 위치한 음식물쓰레기 자원화시설에서 발생되는 음폐수를 각각 채취하여 사용하였다. 개별 기질의 C/N 비는 피혁폐기물이 34.1, 음폐수가 13.5로 확인되었으며, 이들의 무게에 따른 혼합비를 조절하여 통합 혐기성소화 기질의 C/N 비를 20, 25, 30으로 맞춰 실험을 진행하였다. 실험결과 기질을 통합하여 C/N 비를 조절한 소화 조건에서 개별 기질의 단독소화 조건보다 많은 바이오가스 생산량이 관찰되었으며, C/N 비 20에서 바이오가스 생산량이 높은 것으로 나타났다. 이는 통합 기질의 C/N 비 조절효과와 함께 피혁폐기물에 비해 생분해도가 높은 음폐수 함량이 기질의 C/N 비가 낮을수록 더 많이 포함되었기 때문으로 판단된다.
In this study, the efficiency of the anaerobic co-digestion of three categories of rural organic waste (animal manure, slaughterhouse waste, and agricultural by-products) and different mixtures of them was investigated. In addition, the relationship between digestion efficiency and the carbon/nitrogen (C/N) ratio was also conducted. Five different mixtures of feedstock including animal manure as a control were estimated by the biochemical methane potential (BMP) test. The results indicate that the biodegradability of the feedstock mixtures was in the range of 62 ~ 75%, which was at least 1.4 times higher than that of single digestion (43%), while the methane yield was increased by almost twice that of single digestion (0.14 to 0.24 ~ 0.41 m3 CH4/kg VSadd). After the BMP test, four feedstock mixtures were selected for a lab-scale reactor, including animal manure as a control sample. The highest methane yield of 0.355 m3 CH4/kg VSadd was obtained from the A4-mixture sample. With regard to the C/N ratio, the mixture materials showed an increase in methane yield by at least 1.2 times (13.4 to 16.4 ~ 21.3%), which means that the C/N ratio had an effect on the performance of co-anaerobic digestion.
Biogas is a gaseous mixture produced from the microbial digestion of organic materials in the absence of oxygen. Raw biogas, depending upon organic materials, digestion time and process conditions, contains about 45 ~ 75% methane, 30 ~ 50% carbon dioxide, 0.1% hydrogen sulfide gas, and a fractional percentage of water vapor. To achieve the standard composition of the biogas, treatment techniques like absorption or membrane separation are performed for the resourcing of biogas. In this paper, the experiments are performed using biogas produced in an environmental digestion facility for food waste. The membrane module was imported from overseas, its membrane process has achieved up to 98% of the methane and 99% of the carbon dioxide separated, and it has manufactured and stored pressurized carbon dioxide. The effects of the feed pressures on the separation of CO2-CH4 by the membrane are investigated. A chelate was utilized to purify the methane from the H2S concentration of 0.1%.
According to the elementary analysis on organic wastes, the C/N ratio, a major condition for anaerobic digestion, is 5.40 to 9.23, except for food waste leachate (FWL). Defined by Tchobanoglous’ mathematical biogas prediction model, methane gas and biogas productions increased, depending on the mixing rate of FWL. Furthermore, anaerobic digestion both wastewater sludge and food waste leachate based on the right mixing ratio, increases methane gas productions compared to digesting wastewater sludge alone. In other words, co-anaerobic digestion is more likely to realize biogasification than single anaerobic digestion. We mix food waste leachate and wastewater sludge from the dairy and beer manufacturing industry by the proportion of 1 : 9, 3 : 7 and 5 : 5. It turns out that they produced 118, 175 and 223 CH4 mL/g VS in the dairy manufacturing and 176, 233 and 263 CH4 mL/g VS in beer manufacturing of methane gas. The result suggests that as the mixing rate of food waste leachate rises, the methane gas productions increases as well. And more methane gas is made when co-digesting wastewater sludge and food waste leachate based on the mixing ratio, rather than digesting only wastewater sludge alone. Modified Gompertz and Exponential Model describe the BMP test results that show how methane gas are produced from organic waste. According to the test, higher the mixing rate of food waste leachate is, higher the methane gas productions is. The mixing ratio of food waste leachate that produces the largest volume of methane gas is 1 : 9 for the dairy industries and 3 : 7 for brewery. Modified Gompertz model and Exponential model describe the test results very well. The correlation values (R2) that show how the results of model prediction and experiment are close is 0.920 to 0.996.
Biogas is a gaseous mixture produced from microbial digestion of organic materials in the absence of oxygen. Raw biogas, depending upon organic materials, digestion time and process conditions, contains about 45-75% methane, 30-50% carbon dioxide, 0.3% of hydrogen sulfide gas and fraction of water vapor. Pure methane has a caloric value of 34,400 kJ/m³, but the lower heating value of raw biogas changes between 13,720 and 27,440 kJ/m³. To achieve the standard composition of the biogas the treatment techniques like absorption must be applied. In this paper the experimental results of the methane purification in simulated biogas mixture consisted of methane, carbon dioxide and hydrogen sulfide were presented. The air-lift reactor is performed with MEA in order to increase the simultaneous purification for the gaseous mixtures of CO2 and H2S which are main components of the biogas. The effects of feed pressures and mixed gas on the separation of CO2-CH4 by membrane are investigated. It was shown that it was possible to achieve the purification of methane from the concentration of 55% up to 99%. The flow cell reactor was used to measure the reaction rate constant and to determine the optimal conditions of process for improving process efficiency.
In order to make the best biogas production in the anaerobic fermentation, it is important to be able to compare the raw input materials on the basis of their sustainability, which may include a variety of environmental indicators. This study examined the comparative sustainability of renewable technologies in terms of their life cycle CO2 emissions and embodied energy, using life cycle analysis. The comparative results showed that power generation of bioenergy was associated with 0.96 kWh/m³ biogas and the reduction of CO2 emission is 2.1kg of CO2/kg Biomass. Other environmental indicators should be applied to gain a complete picture of the technologies studied. The generation of electricity is 2.07 kWh/m³ biogas in comparison with theoretical results of 3.09 kWh/m³ (efficiency of generator is 30%) based on the assumption of the removal efficiency 95% of CO2, methane conversion 100%, efficiency of generator 30%. Final results are the production of methane: 250 m³/day, production of electricity: 770kWh/day when used 5m³/day of waste.
In this study, anaerobic co-digestion experiments for mixtures consisting of sewage sludge with food wastewater and livestock wastewater were conducted to assess the methane yields, the volatile solids (VS) removal rates and the dynamic kinetics. An augmented simplex centroid design (ASCD) was employed to design the mixing rate of organic wastes for the anaerobic co-digestion. Also, synergistic effects on the anaerobic co-digestion were studied using models obtained by the ASCD. As a result, synergistic effects were not observed in terms of methane yield and VS removal rate. It was just showed that there was a linear relationship between the cumulative methane yield and the mixing rate of food wastewater. The results might be attributable that the sewage sludge and the livestock wastewater had very lower C/N ratio compared with food wastewater that had a C/N ratio within a range required for a correctly operating anaerobic co-digestion. Therefore, increasing mixing rates of food wastewater increased the methane yield and VS removal rate, but there was not a synergistic effect by the anaerobic co-digestion.
In this study, optimization of anaerobic co-digestion for food and livestock wastes was studied by an experimental design method. A central composite design (CCD) was applied in designing experiments. Selected two independent variables for this study were initial substrate concentration and mixing rate of livestock wastes. The ranges of experiment for initial substrate concentration and mixing rate of livestock wastes were 2~10 g-VS/L and 0~100%, respectively. Selected responses were methane yield, maximum methane production rate and volatile solids (VS) removal rate. The experimental design was analyzed using a response surface methodology (RSM). Models obtained by the RSM were analyzed by analysis of variance (ANOVA). ANOVA demonstrated that the models were highly significant. Optimal conditions obtained for the models were initial substrate concentration of 2.1 g-VS/L and mixing rate of livestock wastes of 48.8%, respectively. The measured values under the optimal conditions were well in agreement with the predicted values from the models. Thus, it showed that the CCD and RSM were appropriate for determination of an optimal mixing condition in the anaerobic co-digestion process for food and livestock wastes.