This study was performed to evaluate the quality characteristics of sourdough bread with addition of lactic acid bacteria (LAB) in the antibacterial activity. The starter cultures were used for sourdough bread to increase bread shelf-life: Lactobacillus fermentum, Lactobacillus paracasei KB28, and Pediococcus pentosaceus MJK7. The results showed that the viable counts of lactic acid bacteria were increased in 8.1~9.2 log cfu/㎖, respectively. The pH of the three sourdoughs was lower than that of control. In the texture characteristics, hardness, gumminess, and chewiness were tended to increase on the sourdough bread. Among the three sourdough breads, bread volume and retrogradation of bread were not significantly different. According to the results from preservation period, the sourdough breads with addition of Lb. paracasei KB28, Ped. pentosaceus MJK7 were showed the appearance of mold and bacteria growth in 5~6 days, whereas the control were showed in 3 days. As a result, a sensory evaluation indicated the highest overall acceptance in order of Lb. fermentum, Lb. paracasei KB28, Ped. pentosaceus MJK7. Based on these results, Lb. paracasei KB28 can be applicable to improve the quality of sourdough bread.
The cultural characteristics and antibacterial activities of Cordyceps militaris and Paecilomyces tenuipes were compared. The mycelial growth was the highest on MCM (Mushroom Complete Medium) for C. militaris and on YMA (Yeast Malt Agar) for P. tenuipes. But the mycelial density on MMM (Mushroom Minimal Medium) was lower than other on media. The optimum mycelial growth was observed at 25℃. C. militaris was low mycelial growth when it was transferred over 5 times generation. The carbon source for the optimum mycelial growth was fructose of monosaccharide, maltose of disaccharide and dextrin of polysaccharide. The calcium nitrate of organonitrogen was found the best mycelial growth on C. militaris, while the sodium nitrate observed to be well for mycelial growth on P. tenuipes. The ammonium tartrate was observed to be the best among the inorganonitrogen used for mycelial growth. Antibacterial activities were found out just C. militaris against Bacillus cereus of Gram (+).
Bacteriocins from lactic acid bacteria have attracted much attention in recent years because of their useful worth in increasing safety and extending shelf life of foods. These substances show an inhibitory effect against some food spoilage bacteria and food-borne pathogens. The inhibitory effect of the bacteriocin produced by lactic acid bacteria against Listeria monocytogenes(L. monocytogenes) was examined in this study. The culture supernatants of 5 kinds of bacteria among the 10 kinds of tested lactic acid bacteria had the inhibitory activity against Listeria sp., various Gram positive and Gram negative bacteria. Bacteriocin produced by Lactobacillus plantarum(Lact. plantarum) LMG 7945 was the most active toward L. monocytogenes. Bacteriocin production of the Lact, plantarum LMG 7945 cultured on MRS broth was increased late logarithmic phase over early stationary phase. This bacteriocin was stable at heat treatment and acidic pH relatively; The activity was retained after heating at 121 for 15min and was active in the pH range of 2-4 but was lost above pH 5.
This mini-review focused on the current advances in the development and the application of the antibacterial agents produced from probiotics strains against foodborne pathogens. Inhibitory activity of the pathogen growth could be achieved by co-culture with probiotics and/or the treatment of metabolites extracted from probiotics culture, whereas strain-dependent efficacy was mainly reported according to the bacterial species of the target pathogens. To overcome the limited antibacterial spectrum and the efficacy of the metabolites from probiotics, the recent research highlight the discovery of novel bioactive substances with broad range of the inhibitory activity of foodborne pathogens and mode-of-action which has not been reported as the major research goal. Moreover, understanding the distribution of functional and regulation genes coding the production of the antibacterial metabolites based on the bacterial genome analysis can provide the clues for the mechanisms of the pathogen control by using probiotics. Major strategies on the application of the genomics in this research area can be represented as follows: 1) functional annotation specialized for antimicrobial proteins, 2) assessment of the antibacterial effects followed by the general/functional annotation, 3) genome and metabolites analysis for the purification of antimicrobial proteins, 4) comparative genomics and the characterization of antimicrobial potential. Especially the relationship between phenotype-genotype based on genomic bioinformation with the results of the practical efficacy tests of bacterial metabolites as an active substance of disinfectants and/or preservatives can be expected to act as supportive research for broadening our knowledge regarding the key metabolic pathways associated with the production of antibacterials from probiotics.