This study was carried out to investigate the management characteristics and growth performance of L. edodes from the cooling stage to incubation. Bags of different heights and weights are available for bagging. When the medium size of 17x13 cm was used and the size of the inoculation hole was changed from 1/3 to 2/3, the browning period was shortened to 30 days. Mycelial growth was evaluated according to the cooling temperature after sterilization. It was observed to be the highest at 122 mm/15 days at 10 °C and 114 mm/15 days and 117 mm/15 days at 15 °C and 20 °C, respectively. The contamination rate of the sawdust media before inoculation was measured as 0, 4.5x10, 1.3x102, 4.0x103 cfu at 5 °C, 10 °C, 15 °C, and 24 °C respectively. The average of 1.6x108 colony forming units (cfu) of microorganisms was observed in the sawdust that had been piled for six months outdoors. In summer, the sawdust has to be used immediately after mixing. The sterilized medium had an average of 4x103 cfu of microorganisms at 24 °C and 1.3×102 cfu at 15 °C. After 15 days of inoculation in vitro, the growth conditions of the sawdust was the best at 132 mm, followed by grain and liquid. When inoculated with liquid spawn, the moisture content of the substrate should be adjusted between 50% and 55% in advance.
This study was carried out to investigate the management characteristics and techniques by comparing and analyzing the process of mixing, sterilization, cooling, inoculation and incubation for bag cultivation of L. edodes. The medium was sterilized after mixing it for 30 minutes, 1 and 2 hours respectively. The general moisture content of the sawdust substrate has been adjusted to 65%, while the case of the L. edodes substrate was 55%. Only 5% of wood chips of 5-8 mm in particle size were mixed to secure the space of the sawdust particles. As a result, mycelial growth was 1.4cm faster and the density was better(+++) than control(++). Wood chips are soaked in advance for a week during winter and 4 days during summer. There is an average number of 1.6x108 (cfu) of microorganisms in the sawdust that has been piled for six months outdoor. In summer, it has to be used immediately after mixing sawdust. High-pressure sterilization should be performed to use as a mushroom spawn, and to improve physical properties, it was great to sterilize the medium at a normal-pressure. There are height and width type for bags to be consumed for bagging. When the height was reduced into 17cm and the width was increased into 13cm, the browning period was shortened by 30 days and the period of mycelial growth was shortened by 25 days. The sterilized medium had an average of 4x103(cfu) of microorganisms at 25°C and 1.3×102 (cfu) at 15°C. After 25 days from inoculation in vitro, the growth condition of sawdust was the best with 13.2 cm, followed by grain spawn and liquid respectively. When inoculated with liquid spawn, the moisture content of substrate should be adjusted to 55% to 50% in advance.
본 연구는 토마토 코이어 자루재배시 습해의 원인을 구명하고 습해를 방지하기 위하여 실시하였다. 실험은 미니찰을 고시하고 단동형 2중 플라스틱하우스에서 실시 되었다. 배양액은 Yamazaki 토마토 전용배양액을 사용하였으며. 배양액 공급시간은 해뜨고 1시간 후 시작하여 해지기 2시간 전에 종료하였다. 자루당 I자형 찢기 및 L 자형 찢기는 6개씩 15cm 길이로 찢었으며, 밑 찢기는 3 개씩 15cm 길이로 뚫었다. 배액구 위치에 따른 배지무게는 포습 24시간 후 I자형 찢기는 14.2kg, L자형 찢기는 13.8kg, 밑 찢기는 12.8kg로 밑 찢기가 가장 가벼웠다. 포습 24시간 후 1일 관수하여 무게를 측정한 결과 I 자형 찢기는 14.5kg, L자형 찢기 14.2kg, 밑 찢기 13.3kg 로 역시 밑 찢기가 가벼웠다. 이것은 밑 찢기에서 배지 내 함수량이 가장 적은 것을 의미한다. 부정근 발생정도 는 I자형 뚫기 및 L자형 뚫기에서 160 및 170개 발생하였으나 밑 뚫기에서는 53개 발생하였다. 뿌리의 건물중 (5주)은 밑 찢기가 57g으로 I자형 찢기 23g 및 L자형 찢기 25g과 비교해서 2배 이상 높았으며, 뿌리길이도 밑 찢기가 31.4cm로 다른 찢기 방법과 비교하여 길었다. 상품수량은 밑 찢기가 26.5kg/20주 로 I자형 찢기 19.7kg, L 자형 찢기 24.0kg와 비교해 높은 수량성을 보였다. 따라서 U자형 베드에서 코이어 자루배지를 이용하여 수경재배를 할 경우 배액구는 밑 찢기로 만들어야 습해를 방지하여 생산성을 높일 수 있을 것으로 사료되었다.
In this study, pressure drop was measured in the pulse jet bag filter without venturi on which 16 numbers of filter bags (Ø140 × 850 ℓ) are installed according to operation condition(filtration velocity, inlet dust concentration, pulse pressure, and pulse interval) using coke dust from steel mill. The obtained 180 pressure drop test data were used to predict pressure drop with multiple regression model so that pressure drop data can be used for effective operation condition and as basic data for economical design.
The prediction results showed that when filtration velocity was increased by 1%, pressure drop was increased by 2.2% which indicated that filtration velocity among operation condition was attributed on the pressure drop the most. Pressure was dropped by 1.53% when pulse pressure was increased by 1% which also confirmed that pulse pressure was the major factor affecting on the pressure drop next to filtration velocity. Meanwhile, pressure drops were found increased by 0.3% and 0.37%, respectively when inlet dust concentration and pulse interval were increased by 1% implying that the effects of inlet dust concentration and pulse interval were less as compared with those changes of filtration velocity and pulse pressure. Therefore, the larger effect on the pressure drop the pulse jet bag filter was found in the order of filtration velocity(Vf), pulse pressure(Pp), inlet dust concentration(Ci), pulse interval(Pi).
Also, the prediction result of filtration velocity, inlet dust concentration, pulse pressure, and pulse interval which showed the largest effect on the pressure drop indicated that stable operation can be executed with filtration velocity less than 1.5 m/min and inlet dust concentration less than 4 g/m3. However, it was regarded that pulse pressure and pulse interval need to be adjusted when inlet dust concentration is higher than 4 g/m3. When filtration velocity and pulse pressure were examined, operation was possible regardless of changes in pulse pressure if filtration velocity was at 1.5 m/min. If filtration velocity was increased to 2 m/min. operation would be possible only when pulse pressure was set at higher than 5.8 kgf/cm2. Also, the prediction result of pressure drop with filtration velocity and pulse interval showed that operation with pulse interval less than 50 sec. should be carried out under filtration velocity at 1.5 m/min. While, pulse interval should be set at lower than 11 sec. if filtration velocity was set at 2 m/min.
Under the conditions of filtration velocity lower than 1 m/min and high pulse pressure higher than 7 kgf/cm2, though pressure drop would be less, in this case, economic feasibility would be low due to increased in installation and operation cost since scale of dust collection equipment becomes larger and life of filtration bag becomes shortened due to high pulse pressure.
The pressure drop through pulse air jet-type bag filter is one of the most important factors on the operating cost of bagfilter houses.
In this study, the pilot-scale pulse air jet-type bag filter with about 6 ㎡ filtration area was designed and tested for investigating the effects of the four operating conditions on the total pressure drop, using the coke dust collected from a steel mill factory.
When the face velocity is higher than 2 m/min, it is not applicable to on-spot due to the increase of power expenses resulting from a high-pressure drop, and thus, 1.5 m/min is considered to be reasonable. The regression analysis results show that the degree of effects of independent parameters is a order of face velocity > concentration > time > pressure.
The results of SPSS answer tree analysis also reveal that the operation time affects the pressure drop greatly in case of 1 m/min of face velocity, while the inlet concentration affects the pressure drop in case of face velocity more than 1.5 m/min.
Research results for the pressure drop variance depending on operation conditions such as change of inlet concentration, pulse interval, and face velocity, etc., in a pulse air jet-type bag filter show that while at 3kg/cm2 whose pulse pressure is low, it is good to make an pulse interval longer in order to form the first layer, it may not be applicable to industry because of a rapid increase in pressure. In addition, the change of inlet concentration contributes more to the increase of pressure drop than the pulse interval does. In order to reduce operation costs by minimizing filter drag of a filter bag at pulse pressure 5kg/cm2, the dust concentration should be minimized, and when the inlet dust loading is a lower concentration, the pulse interval in the operation should be less than 70 sec, but when inlet dust loading is a higher concentration, the pulse interval should be below 30 sec. In particular, in the case that inlet dust loading is a higher concentration, a high-pressure distribution is observed regardless of pulse pressure. This is because dust is accumulated continuously in the filter bag and makes it thicker as filtration time increases, and thus the pulse interval should be set to below 30 sec. If the equipment is operated at 1m/min of face velocity, while pressure drop is low, the bag filter becomes larger and thus, its economics are very low due to a large initial investment. Therefore, a face velocity of around 1.5 m/min is considered to be the optimal operation condition. At 1.5 m/min considered to be the most economical face velocity, if the pulse interval increases, since the amount of variation in filter drag is large, depending on the amount of inlet dust loading, the operation may be possible at a lower concentration when the pulse interval is 70 sec. However, for a higher concentration, either face velocity or pulse interval should be reduced.
The change of pressure drop according to the change in the inlet concentration, pulse interval, and injection distance of pulse air jet type bag filters, and the effect of venturi installation are as follows.
The pressure drop with the range of 30 to 50mmH2O varies according to the injection distance with 30, 50, 70, 90sec and the inlet concentration of venture built-in fabric filters. For the lower concentration of 0.5g/m3 and 1g/m3, the pressure drop(ΔP) was stable 60 to 90minutes after operation. For the higher concentration of 3g/m3, as ΔP continues to go up, pulse interval should be set shorter than 30 seconds.
The pressure drop with the injection distance of 110mm, when inlet dust concentration is 0.5g/m3 or 1g/m3, is 1.3 to 2 lower than with the injection distance of 50, 160, and 220mm, which means that the inflow amount of the secondary air by the instant acceleration is large. The injection distance of 2g/m3 and 3g/m3 has the similar pressure distribution. The higher inlet concentration is, the more important pulse interval is than injection distance.
The pressure drop has proved to be larger when inlet concentration is lower and injection distance closer, on condition that the venturi is installed. The change in the pressure drop was smallest when injection distance was 50mm, followed by 220mm, 160mm, and 110mm.