본 논문에서는 바이오매스로부터 급속열분해를 통해 난방용, 발전용 및 수송용 연료로 사용하 기 위해 바이오오일을 생산하는 기술개발 현황을 나타내었다. 바이오매스를 작은 규모의 액체연료로 전 환하기 위해 가장 효율적인 방법 중 하나는 급속열분해이다. 급속열분해를 통한 바이오오일은 450 ℃ ~ 600 ℃ 온도에서 바이오매스가 신속히 열분해 되어 증기 급냉를 위해 외부 산소가 없는 조건에서 생산 된다. 이 바이오오일은 최초 건조 바이오매스 기준 최대 75 무게%까지 생산할 수 있지만, 일반적으로 60-75 무게% 수준이 적합하다. 본 연구에서는 바이오매스의 원료특성, 바이오오일 생산원리, 바이오오 일의 특성 및 활용분야에 대한 최근의 개발현황을 살펴보았다.
화석연료는 가격의 변동이 심하고 그 매장량이 한정되어 있고 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 전 세계적으로 화석연료의 고갈과 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 지속가능한 청정 에너지자원에 대한 필요성이 대두되고 있으며, 관련된 연구개발이 활발히 진행 중이다. 탄소 중립적 친환경에너지인 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 현재 국내 폐목재 발생량은 지속적으로 증가하여 처리 및 활용방안이 필요한 실정이다. 이에 본 연구에서는 폐목재를 활용하여 생산 된 급속열분해 오일을 가스화하여 고품질 합성가스를 생산함으로써 기존의 바이오매스 직접 가스화의 단점을 극복하고자 하였다. 바이오매스를 이용한 가스화 공정은 원료인 바이오매스의 낮은 에너지 밀도로 인하여 가스화 플랜트와 바이오매스 원산지간 거리에 따라 경제성이 감소한다. 이러한 경제성 문제를 극복하기 위한 방안으로 바이오매스 원산지에서 바이오매스를 급속열분해 하여 생산된 고 에너지 밀도의 열분해오일을 가스화 플랜트로 이송하여 에너지를 생산하는 방안이 대두되고 있다. 따라서 본 연구에서는 폐목재를 원료로하여 최적조건에서 생산 된 급속열분해 오일을 원통형 가스화기(0.1 m diameter × 1.4 m height)를 사용하여 E/R ratio, 반응온도 등을 운전변수로 하여 가스화 실험을 수행하였다. 생산되는 합성가스의 조성을 Micro GC를 이용하여 분석하여 고품질 합성가스를 생산할 수 있는 최적 조건에 대한 연구를 진행하였다.
This study focuses on computational particle fluid dynamics (CPFD) modeling for the fast pyrolysis of biomass in a conical spouted bed reactor. The CPFD simulation was conducted to understand the hydrodynamics, heat transfer, and biomass fast pyrolysis reaction of the conical spouted bed reactor and the multiphase-particle in cell (MP-PIC) model was used to investigate the fast pyrolysis of biomass in a conical spouted bed reactor. A two-stage semi-global kinetics model was applied to model the fast pyrolysis reaction of biomass and the commercial code (Barracuda) was used in simulations. The temperature of solid particles in a conical spouted bed reactor showed a uniform temperature distribution along the reactor height. The yield of fast pyrolysis products from the simulation was compared with the experimental data; the yield of fast pyrolysis products was 74.1wt.% tar, 17.4wt.% gas, and 8.5wt.% char. The comparison of experimental measurements and model predictions shows the model’s accuracy. The CPFD simulation results had great potential to aid the future design and optimization of the fast pyrolysis process for biomass.
The development of renewable energy is currently strongly required to address environmental problems such as global warming. In particular, biomass is highlighted due to its advantages. When using biomass as an energy source, the conversion process is essential. Fast pyrolysis, which is a thermochemical conversion method, is a known method of producing bio-oil. Therefore, various studies were conducted with fast pyrolysis. Most studies were conducted under a lab-scale process. Hence, scaling up is required for commercialization. However, it is difficult to find studies that address the process analysis, even though this is essential for developing a scaled-up plant. Hence, the present study carries out the process analysis of biomass pyrolysis. The fast pyrolysis system includes a biomass feeder, fast pyrolyzer, cyclone, condenser, and electrostatic precipitator (ESP). A two-stage, semi-global reaction mechanism was applied to simulate the fast pyrolysis reaction and a circulating fluidized bed reactor was selected as the fast pyrolyzer. All the equipment in the process was modeled based on heat and mass balance equations. In this study, process analysis was conducted with various reaction temperatures and residence times. The two-stage, semi-global reaction mechanism for circulating fluidized-bed reactor can be applied to simulate a scaled-up plant.
The quality characteristics of ‘Xiangshui’ pears (Pyrus ussuriensis) treated with different concentrations of biomass pyrolysis liquid (BPL) during storage at 25℃ were investigated. The weight of ‘Xiangshui’ pears treated with BPL declined at a slower rate than that of the control. The rot index of BPL-treated ‘Xiangshui’ pears decreased with increasing storage times, and treatment with 20-fold-diluted BPL resulted in the lowest rot index after storage for 12 days. The total acid content of ‘Xiangshui’ pears treated with 20-fold-diluted BPL was 0.19%, and was the highest after storage for 12 days. After storage for 12 days, the total sugar content of ‘Xiangshui’ pears treated with 20-fold-diluted BPL was 7.19%; this was significantly higher than that of the control, but not significantly different from that of pears treated with other BPL dilutions. The vitamin C content of ‘Xiangshui’ pears showed a decreased trend, and pears treated with 20-fold-diluted BPL had a vitamin C content of 2.21 mg/100 g after storage for 12 days and showed the least decline compared to other treatments. In addition, respiration in ‘Xiangshui’ pears was effectively inhibited by treatment with BPL. In conclusion, BPL treatment exerts a protective effect on the quality of ‘Xiangshui’ pears during storage, with 20-fold-diluted BPL being the most effective.
화석연료의 고갈문제와 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 중국, 인도 등의 국가에서 경제 성장을 위한 화석연료 의존도가 계속 높아지고 있다. 그러나 화석연료는 가격의 변동이 심하고, 한정된 매장량을 지니기 때문에 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 바이오매스 및 폐자원을 활용하여 에너지를 생산하는 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 바이오에너지는 바이오매스, 폐자원으로부터 전환된 에너지 사용 시 발생되는 이산화탄소가 순환을 통하여 바이오매스의 성장에 다시 쓰이게 되므로 탄소중립적인 친환경 에너지이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 바이오매스는 열분해, 가스화, 연소 등의 열화학적 분해공정을 통하여 더욱 가치있는 에너지의 형태로 활용 가능하며, 그 중 급속열분해 공정은 무산소 조건, 약 500℃의 반응온도, 2초 이하의 짧은 기체체류시간을 반응조건으로 하여 생산된 타르를 응축과정을 통해 액상 생성물인 바이오원유로 회수하는 공정이며 바이오원유의 회수율을 가장 높일 수 있는 공정이다. 바이오오일의 수율 및 성상은 급속열분해 운전조건에 따라 영향을 받으며 그 중 반응온도가 가장 중요한 인자이다. 따라서 본 연구에서는 낙엽송 톱밥을 원료로 하여 400 - 550℃로 반응온도를 변화시켜가며 바이오원유를 생산하고 생산된 바이오원유의 수율 및 다양한 물리화학적 분석(고위발열량, 수분함량, 점도, pH 등)을 통하여 그 특성을 파악하는 연구를 진행하였다.
폐 바이오매스의 열 화학적 전환 공정 중 하나인 급속열분해 공정은 공정변수에 따라 열분해 생성물의 수율 및 특성이 변화한다. 급속 열분해 반응이 이루어지는 반응기는 전체 급속 열분해 공정의 핵심이며, 폐 바이오매스의 급속열분해 반응을 위해서는 1,000~10,000℃/s의 빠른 열전달 속도, 500℃의 열분해 반응온도, 1~2초이내의 열분해 생성물 체류시간이 요구된다. 따라서 이를 실현하기 위한 급속열분해 반응기 개발에 많은 연구가 진행되었다. 현재 개발되어 사용 중인 대표적인 급속열분해 반응기는 기포 유동층, 순환유동층, 분사층, Augur형, 융해열분해, 진공열분해 등의 반응기가 있다. 이중 분사층 반응기는 기체-고체 간의 열 및 물질전달이 우수하고, dilute spouted bed regime 에서는 반응기 내 열분해 가스의 체류시간이 짧아 오일의 수율을 기존 유동층 반응기 보다 증가시킬 수 있는 장점이 있다. 분사층 급속열분해 반응기 내 폐 바이오매스의 급속 열분해 반응은 기체-고체간의 수력학적 특성과 열전달 특성에 영향을 받는다. 따라서 분사층 급속열분해 반응기의 최적 설계와 운전을 위해서는 반응기 내 수력학적 특성과 열전달 특성에 대한 정보가 필요하다. 그러나 현재까지 분사층의 운전조건에 따른 분사층 내 열전달 특성에 대한 연구는 부족한 실정이다. 따라서, 본 연구에서는 분사층 내 열전달 특성 연구를 위하여 열전달 센서를 설계/제작하였으며, 제작된 열전달 센서를 통하여 분사층내 기체-고체간의 열전달 특성을 측정하였다. 분사층 내 기체-고체간의 열전달 실험은 공탑 속도, Geldart 입자분류, bed 높이를 실험변수로 하여 실험을 수행하였으며, 실험을 통하여 실험변수에 따른 분사층 내 기체-고체간의 열전달 계수의 변화를 연구하였다.
Fast pyrolysis is one of the most viable and commonly used thermochemical conversion technologies which can be applied to both fossil-based and bio-based wastes. The conical spouted bed reactor is an alternative to fluidized beds and has been proven to be a versatile reactor for waste biomass fast pyrolysis, which allows obtaining high bio-oil yields because of its high heat and mass transfer rates and very short residence times. Understanding of the stable hydrodynamic operation range of the conical spouted bed is important for operation of fast pyrolysis reactor. This study characterizes the hydrodynamics of conical spouted bed using the analysis of pressure fluctuation signals. Stable hydrodynamic operation rages were identified by evaluation of pressure drop curve and FFT analysis. The stable operation range of a conical spouted bed was maintained while dominant frequency is 10 Hz. This appears to be promising cost-effective tool for precess control especially in fast pyrolysis systems.
Pyrolysis of biomass is the thermal decomposition of its carbohydrate structures into numerious hydrocarboncompounds, light gases and carbon-rich solid residue. Understanding the pyrolysis characteristics is essential asfundamental data for various thermo-chemical conversion of biomass. This study investigated slow pyrolysis of fourIndonesian biomass (sugarcane bagasse, cocopeat, palm kernel shell (PKS), umbrella tree) for a temperature range of300~600oC. With increase in temperature, all samples showed a decrease in the biochar yield as more compounds werereleased as vapors increasing the bio-oil and gas yields. The biochar became more carbon-rich with a carbon content of85% or higher at 500oC. However, the product yields and properties showed large variations between the samples.Cocopeat had the highest biochar yield, while wood and baggasse had the highest bio-oil yield. Despite the low massyields, the biochar of wood and bagasse had the best quality in terms of macro-pore and micro-pore development, whichis a key property for its applications as adsorbent, soil ameliorator, as well as fuel. The bio-oil did not have a sufficientlyhigh HHV for use as main fuel, but could be utilized through co-firing or slurry production with biochar. In the lightgases, CO and CO2 were dominant, but could be burned on-site to supply the heat required for pyrolysis.
In order to obtain the optimal design of a char removal cyclone, the effect of the vortex finder height and inlet shapeon its performance are numerically carried out. The pressure drop and collection efficiency are calculated for four differentcyclones with different vortex finder heights and inlet shapes. To validate the present numerical process, the calculatedpressure drops for two types of cyclones are compared with experimental results and the results show a good agreementbetween experimental and numerical results. From the results, increasing the height of the vortex finder, the collectionefficiency is increased. As for cyclone inlet shapes, the tangential one is characterized by lower efficiency compared withthe volute counterpart. The current result can be used for the design of cyclones with high collection efficiency, especiallyfor removing tiny char which is generated during fast pyrolysis process of waste biomass.
In the present study, lab-scale fast pyrolysis reactor (1kg/hr) using lignocellulosic waste biomass was numerically modeledwith various reaction mechanism and the calculation results were compared. Three kinds of reaction mechanisms were appliedsuch as three-step mechanism, two-stage, semi global mechanism and Broido-Shafizadeh mechanism to simulate chemicalreactions in the fast pyrolysis reactor. The fast pyrolysis reactor was modeled as function of mass fraction and reactiontemperature following each reaction mechanism. Especially, the reaction temperature is one of important factors to determinebio-oil yield. Hence, in this study, reaction rates and yield of fast pyrolysis products were compared with varying reactiontemperature for the three kinds of reaction mechanism. The variation of reaction rate for two-stage, semi global mechanismand Broido-Shafizadeh mechanism showed very similar pattern but, three-step mechanism has different trend because theeffect of secondary reaction was missing. The yield of tar was increased before reaching maximum tar yield at 430oC and520oC for two-stage, semi global mechanism and Broido-Shafizadeh mechanism, respectively then decreased as temperaturerises more. But, the yield of tar was increased continuously for three-step mechanism as temperature rises. The yield of non-condensable gas and char was increased as temperature rises for three kinds of reaction mechanisms.