We investigated the sexual maturity time of B. ignitus. In investigating ovary development, the time of sexual maturity of queen was 10 days after eclosion. In case of male, the number of sperm was 246 thousand at immediately after eclosion, and was highest as 480 thousand at 9 days, and tended to show a dramatic decline at 35 days (87 thousand). In consideration of number of sperms, the time of sexual maturity of male was 3-15 days after eclosion. In the sexual maturity time of queen in mating, the queen was not mated at immediately after eclosion, and showed a decrease in 20 days. On the other hand, the male showed 3.3% of mating at immediately after ecolosion, showed the highest of 43.3% at 6 days after eclosion, and tended to decrease in 25 days. In summary, sexual maturity time of B. ignitus in reproductive organs and mating is most favorable in 9-12 days after eclosion for queen and 6-9 days for male.
화분매개곤충인 호박벌(B. ignitus)의 교미율을 높이기 위하여 생식기관 발육과 교미에 의한 성적 성숙시기를 조사하였다. 난소 소관 당 알 수와 수정낭 크기 등 난소 발육으로 볼 때, 여왕벌의 성적 성숙시기는 우화 10일 이내이었다. 수벌의 정자수는 우화당일에 24.6만개이었고, 우화 9일째가 48.0만개 정도로 가장 많았으며, 우화 35일(8.7만개) 이후 정자수가 감소하는 경향을 보였다. 또한 교미횟수가 증가함에 따라 정자수가 줄어드는 것을 알 수 있었다. 수벌의 정자수에 의한 성적 성숙시기는 우화 3~15일이었다. 교미에 의한 성적 성숙시기 조사결과, 여왕벌은 우화직 후에는 전혀 교미를 하지 않았으며, 우화 20일 이후에는 교미율이 떨어지는 경향을 보였다. 교미율과 산란율 등으로 볼 때 여왕벌의 교미에 적합 한 시기는 우화 9~20일이었다. 반면에 수벌은 우화 직후에도 3.3% 교미하였으며, 우화 6일째가 43.3%로 가장 높았으며, 우화 25일 이후부터는 감소하는 경향이었다. 교미율과 산란율 등으로 볼 때, 수벌의 교미 성숙시기는 우화 6~20일이었다. 이상의 생식기관 발육과 교미에 의한 봉세발 달 등으로 볼 때 호박벌 여왕벌의 최적 성적 성숙시기는 우화 9~12일, 수벌은 우화 6~9일로 판단된다.
The honeybee inhibitor cysteine knot (ICK) peptide acts as an antifungal peptide and insecticidal venom toxin. However, the ICK peptide from bumblebees has not been characterized. Here, we report the molecular cloning and antifungal activity of a bumblebee (Bombus ignitus) ICK peptide (BiICK). We identified a BiICK that contains an ICK fold. The BiICK was expressed in the epidermis, fat body, and venom gland of B. ignitus worker bees. A 6.7-kDa recombinant BiICK peptide was expressed in baculovirus-infected insect cells. Recombinant BiICK peptides directly bound to Beauveria bassiana, Ascosphaera apis, and Fusarium graminearum, but they did not bind to Escherichia coli, Paenibacillus larvae, or Bacillus thuringiensis. Consistent with this finding, BiICK exhibited antifungal activity against fungi. These results demonstrate that BiICK acts as an antifungal peptide.
Bumblebees are important pollinators of crops and wildflowers. Bumblebees generally produce one generation per year. One of the key stages for year-round rearing of bumblebees is breaking diapause. To evaluate the effects of a combination method of CO2-narcosis and cold treatment to break the diapause of B. ignitus and B. terrestris queens, we determined whether this method affected their ability to establish a colony after the diapause break. The diapause treatment regimes that were utilized were CO2(CO2– narcosis), CT-1M(cold treatment at 5°C for 1 month), CT-1M-CO2(CO2–narcosis after cold treatment for 1 month), CT-2M-CO2(CO2–narcosis after cold treatment for 2 months), CT-2M (cold treatment for 2 months), CT-2.5M-CO2(CO2–narcosis after cold treatment for 2.5 months) and CT-2.5M (cold treatment at 5°C for 2.5 months). In view of the effects on the colony developmental characteristics of B. ignitus queens, the most favorable diapause treatment was CT-1M-CO2. A combination method of CO2– narcosis and cold temperature treatment yielded better results than that of single CO2–narcosis or cold temperature treatment on the colony development of diapause-broken B. ignitus queens. In the case of B. terrestris queens, we concluded that a combination method of CO2 and cold temperature treatment yielded better results than that of a single cold-temperature(up to2 months) treatment. In conclusion, the findings of the present study indicated that the combined application of CO2 and cold temperature was a favorable method for the colony development of diapause-broken B. ignitus and B. terrestris queens compared with only CO2–narcosisorcoldtemperaturetreatments. A combination method of CO2 and cold treatment reduced the side effect of CO2–narcosis and shortened the duration of cold treatment by at least 1month.
Bumblebees are widely used to pollinate various greenhouse crops. Among the different bumblebee species, Bombus ignitus is indigenous to Korea, China, Japan and Russia. B. ignitus undergoes one generation per year, and artificial hibernation is essential for year-round rearing of the bumblebee. Keeping the queens under low-temperature conditions for several months is an effective method for terminating their diapause and promoting colony development. In the present study, we investigated how cold temperature affects the artificial hibernation of B. ignitus queens. Under chilling temperatures of -2.5°C, 0°C, 2.5°C and 5°C with constant humidity >80%, the queens stored at 2.5°C exhibited the highest survival rates, which were 74.0% at one month, 67.0% at two months, 60.0% at three months, 46.0% at 4 months, 33.0% at 5 months and 24.0% at 6 months. Lower survival rates were observed at 0°C, 5°C, 7.5°C and 12.5°C. At 2.5°C the colony developmental characteristics after diapause were 1.2- to 1.5-fold greater than those when queens were stored at 5°C. Thus, 2.5°C and 70% R.H. were the most favorable chilling temperature and humidity conditions for terminating the diapause of B. ignitus queens.
Bumblebee venom serine protease inhibitors have been shown to inhibit plasmin activity. In this study, a bumblebee (Bombus ignitus) venom serine protease inhibitor (BiVSPI) that acts as an antimicrobial factor was identified. BiVSPI is a 55-amino acid mature peptide with ten conserved cysteine residues and a P1 methionine residue. BiVSPI was expressed in the venom gland and was present as an 8-kDa peptide in venom. Recombinant BiVSPI expressed in baculovirusinfected insect cells exhibited inhibitory activity against chymotrypsin, but not trypsin. BiVSPI also exhibited inhibitory activity against microbial serine proteases, such as subtilisin A (Ki 6.57 nM) and proteinase K (Ki 7.11 nM), indicating that BiVSPI acts as a microbial serine protease inhibitor. In addition, BiVSPI was also shown to bind directly to Bacillus subtilis, B. thuringiensis, and Beauveria bassiana, but not to Escherichia coli. Consistent with these results, BiVSPI exhibited antimicrobial activity against Gram-positive bacteria and fungi. These findings provide novel evidence for the antimicrobial function of this bumblebee venom serine protease inhibitor.
The bumblebee, Bombus ignitus (Hymenoptera: Apidae), is a valuable natural resource that is widely utilized for greenhouse pollination in South Korea. Understanding the magnitude of genetic diversity and geographic relationships is of fundamental importance for long term preservation and utilization. As a first step, we sequenced a partial COI gene of mitochondrial DNA (mtDNA) corresponding to the “DNA barcode” region and the complete internal transcribed spacer 2 (ITS2) of nuclear ribosomal DNA from 88 individuals collected in nine South Korean localities. The complete ITS2 sequences were longest among known insects, ranging in size from 2,034 bp ~ 2,052 bp, harboring two duplicated 112-bp long repeats. The 658-bp long mtDNA sequences provided only six haplotypes with a maximum sequence divergence of 0.61% (4 bp), whereas the ITS sequences provided 84 sequence types with a maximum sequence divergence of 1.02% (21 sites). The combination of the current COI data with those of published data suggest that the B. ignitus in South Korea and China are genetically a large group, but those in Japan can be roughly separated into another group. Overall, a very high per generation migration ratio, a very low level of genetic fixation, and no discernable hierarchical population were found to exist among the South Korean populations of B. ignitus, which suggests panmixia. This finding is consistent with our understanding of the dispersal capability of the species.
Many bumblebee species have declined in number in recent decades, particularly in developing regions. Widespread declines of bumblebee species threaten the pollination levels of both wildflowers and crops. Here, we investigated the body weight and colony-developmental characteristics of Korean native bumblebee (B. ignitus) queens collected from 2000 to 2010 for conservation of native bumblebees for breeding. The average weight of 6,852 queens was 0.77 ± 0.44 g. The weight of B. ignitus queens collected in 2005 was the greatest, 0.87 ± 0.12 g, which was 1.0–1.3-fold heavier than any other year. The average oviposition rate was 81.6 ± 10.7%, and 2004 showed the highest rate, 95.0%. This value corresponded to 1.1-1.6-fold increases over the queens collected in the other years. The average rate of colony foundation was 60.9 ± 11.0%. Queens in 2008 exhibited the best performance, 75.4%, which was 1.0-1.9-fold higher than the other years. The rate of progeny-queen production averaged 27.0 ± 9.4% (Fig. 5) and peaked in 2001 at 43.2%; this value was 1.1–4.7-fold higher than other years. The average number of queens produced and number of generations begotten by queens was 27.6 ± 10.1% and 4.8 ± 2.0, respectively. Queens in 2000 averaged 9 generations of offspring, which was 1.1-3.1-fold greater than other years. These results indicate that the colony-developmental characteristics of the collected queens changed significantly between 2000 and 2010. In addition, there was no correlation between body weight and number of queens collected, although body weight was affected by collection year. Since 2008, the colony- developmental characteristics of queens have worsened.
Bee venom contains serine proteases and serine protease inhibitors. In this study, we identified a bumblebee (Bombus ignitus) venom Kunitz-type serine protease inhibitor (Bi-KTI) that acts as a plasmin inhibitor. Bi-KTI showed no detectable inhibitory effect on factor Xa, thrombin, or tissue plasminogen activator. In contrast, Bi-KTI strongly inhibited plasmin, indicating that it acts as an antifibrinolytic agent. The fibrin(ogen)olytic activities of B. ignitus venom serine protease (Bi-VSP) and plasmin in the presence of Bi-KTI indicate that Bi-KTI targets plasmin more specifically than Bi-VSP. These findings demonstrate a novel mechanism by which bumblebee venom affects the hemostatic system through the antifibrinolytic activity of Bi-KTI and through Bi-VSP-mediated fibrin(ogen) olytic activities, raising interest in Bi-KTI and Bi-VSP as potential clinical agents.
Glutathione S-transferases (GSTs) are multifunctional enzymes that are mainlyinvolved in the xenobiotic metabolism and protection against oxidative damage. Most studies of GSTs in insects have been focused on their role in detoxifying exogenous compounds in particular insecticides. Here, we show the expression profiles of GSTs of the bumblebee Bombus ignitus in response to oxidative stress. We identified a sigma-class GST from B. ignitus (BiGSTS). The BiGSTSgene consists of 4 exons that encode 201 amino acids. Comparative analysis indicates that the predicted amino acid sequence of BiGSTS shares a high identity with the sigma-class GSTs of hymenopteran insects such as Apis mellifera (70% protein sequence identity) and Solenopsis invicta (59% protein sequence identity). Tissue distribution analyses showed the presence of BiGSTS in all tissues examined, including the fat body, midgut, muscle and epidermis. The oxidative stress responses analyzed by quantitative real-time PCR showed that under H2O2 overload, BiGSTS and BiGSTD (identified in our previous study) were upregulated in all tissues examined, including the fat body and midgut of B. ignitus worker bees. Under uniform conditions of H2O2 overload, the expression profile of GSTs and other antioxidant enzyme genes, such as phospholipid-hydroperoxide glutathione peroxidase (Bi-PHGPx) and peroxiredoxins (BiPrx1 and BiTPx1), showed that other antioxidant enzyme genes are acutely induced at 3 h after H2O2 exposure, whereas BiGSTS and BiGSTD are highly induced at 9 h after H2O2 exposure in the fat body of B. ignitus worker bees. These findings indicate that GSTs and other antioxidant enzyme genes in B. ignitusare differentially expressed in response to oxidative stress. Taken together, our findings indicate that BiGSTS and BiGSTD are oxidative stress-inducible antioxidant enzymes that may play a role in oxidative stress response.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of the innate immune system that recognize peptidoglycan, a unique cell wall component of bacteria. Here we cloned and characterized PGRP-S from the bumblebee Bombus ignitus (BiPGRP-S). The BiPGRP-S gene consists of four exons encoding 194 amino acid residues. Comparative analysis indicates that the predicted amino acid sequence of BiPGRP-S shares high identity with enzymatically active PGRP-S proteins and contains the amino acids required for amidase activity. BiPGRP-S in B. ignitus worker bees is constitutively expressed in boththe fat body and epidermis, and it is secreted into the hemolymph. Quantitative real-time PCR assays revealed that in both the fat body and epidermis, the BiPGRP-S gene is highly induced by an injection of Bacillus thuringiensis. In addition, recombinant BiPGRP-S expressed as a 19-kDa protein in baculovirus-infected insect cells can bind to B. megaterium and B. thuringiensis but not to Staphylococcus aureus, Escherichia coli or Beauveria bassiana. Consistent with these data, BiPGRP-S shows antibacterial activity against B. megaterium and B. thuringiensis. These results indicate that BiPGRP-S is an inducible protein that may be involved in the immune response against bacterial infection of the genus Bacillus as an amidase-type PGRP-S.
Bumblebees are widely used to pollinate crops in greenhouses and fields. Here, we investigated whether different wake-up treatments during a short period of 1-3 days just before indoor rearing has any effects on oviposition and colony development of CO2-treated Bombus ignitus queens and artificially hibernated B. terrestris queens The wake-up regimes were defined as 16L for 1 day (16L-1), 16L per day for 3 days (16L-3), 24L for 1 day (24L-1), or 24D for 1 day (24D-1). Among these wake-up treatments, the oviposition rate and preoviposition period of B. ignitus queens reared at 24L-1 were 16.7-25.1% higher and 1.0-3.5 days shorter than other wake-up treatments. B. terrestris queens reared at 24L-1 also showed the best results for egg-laying characteristics, which were 8.9-18.8% higher for oviposition and 0.6-3.5 days shorter for preovipostion period than other wake-up treatments. Furthermore, B. terrestris queens reared at 24L-1 were 17.5% and 13.8% higher in rate of colony foundation and queen production, respectively, than other wake-up treatments. These results show that the most favorable wake-up treatment just before rearing for egg-laying and colony developmental characteristics of B. ignitus and B. terrestris queens was 24L-1. Overall, our findings indicate that a wake-up treatment just before rearing was effective for colony initiation and colony development of bumblebee queens.
The bumblebee is an important pollinator of various greenhouse crops, especially for tomatoes and there has been increasing interest in commercial use of the insects for pollination. Recent advances in commercial rearing of the European bumblebee (Bombus terrestris) made it possible to package bumblebee for crop pollination. Bumblebees are distributed world widely including alpine, cool temperate and even arctic environments of the northern continents. We chose B. ignitus out of seven Korean native bumblebees, because the species showed the best results both in artificial multiplication and in pollinating ability. Now, we are studying an artificial year-round mass rearing of B. ignitus selected as the most reliable native species in crop pollination. Therefore, we investigated the optimum temperature and humidity, effect of photoperiod and CO2-treatment, facilitating effects of helper, and artificial hibernation of B. ignitus to establish year-round mass rearing of B. ignius. The experimental regimes of temperature and humidity were defined as 23℃, 27℃ and 30℃ under a constant humidity of 65% R.H., and 50%, 65% and 80% R.H. under a constant temperature of 27℃, respectively. Among the temperature regimes, 27℃-rearing showed the best results, i.e., the rates of colony initiation, colony foundation and progeny-queen production at 27℃ were 83%, 63% and 46%, respectively, which corresponded to 2.2-5.5 times the respective values at other temperature regimes. The numbers of progeny produced at 27℃-rearing, 164±33 workers, 553±174 males and 33±48 queens were also higher, corresponding to 21.8 and 1.5 times those at 23℃ and 30℃, respectively. In terms of humidity, 65% R.H. was favorable for big colony formation. Under the same humidity, the rates of colony initiation, colony foundation and progeny-queen production were 85%, 70% and 50%, respectively, and the number of progenies reached 180±30 workers, 578±179 males and 35±38 queens. Therefore, 27℃ and 65% R.H. were determined to be the favorable environmental conditions for colony development of B. ignitus in indoor rearing. It was investigated whether developmental characteristics of foundation queens of B. ignitus collected in the 4 localities in Korea would be affected by the first oviposition days of them. The first ovipostion day was classified as 1 - 4 days (immediate early), 5 - 6 days (early), 7 - 10 days (delayed early), 11 - 20 days (medium), 21 - 40 days (late), and above 41days (very late). The queen that had the early first oviposition day, i.e., laid eggs so early after starting to be raised indoors, showed much higher rate of colony foundation and progeny-queen production and much shorter period of colony foundation and worker emergence. Besides, the numbers of worker and progeny-queen emerged from the queen that had the early first oviposition day were higher than those of the queen that had the late first oviposition. In results, the queen that had the early first oviposition day could make colony stronger and could make colony formation period shorter, therefore, the first oviposition day of foundation queen was proved to be a criterion for the selection of super colonies when B. ignitus is raised indoors. It was investigated whether or not such helpers as worker bee, bee-cocoon and egg-cup etc, have any effects on oviposition and colony foundation of the bumblebee queen, B. ignitus. Among the helpers tested, the callow workers of B. ignitus and B. terrestris showed the most remarkable effects on the oviposition rates to 92% and 88%, respectively. The live cocoon as a helper improved oviposition rate over 60%. A narcotized old worker 10 days-aged after emergence, showed similar effects to a callow worker on the colony development such as oviposition rate, colony foundation and progeny-queen production. On the other hand, dried cocoon, callow honeybee worker or egg-cup did not show a positive effect as a helper. In the number of workers recruited to a foundation queen, two workers showed better effect than one worker on the colony development, with no difference between two and more. The effect of photoperiodic regimes on the oviposition and colony development of B. ignitus queens was examined with 0L, 8L, and 16L under 2 7℃ and 65% R. H. Among these photoperiod regimes, the oviposition rate at 8L and 16L was 80.2% and 83.1%, respectively, which was 12-15% higher than that at the dark condition (0L). Duration up to first oviposition at 8L and 16L was 17.5 days and 16.5 days, respectively, which was 2-3 days shorter than that at 0L. The colony foundation rate at 8L and 16L was 9.2% and 10.4%, respectively, which corresponded to 1.7-2.0 fold the value at 0L. In addition, the rate of progeny-queen production at 8L and 16L was also two fold higher than that at 0L. Taken there together, the light conditions (8L and 16L) rather than dark condition (0L) were more suitable for oviposition and colony development for B. ignitus in the indoor rearing condition. We investigated mating conditions of photoperiod, illumination and temperature during mating periods, care temperature of queen before mating, mating period and number of queen per mating cage to improve mating rate of B. ignitus. Among photoperiodic regimes of 12L, 14L and 16L during mating periods, queen mated at 14L showed better results than at 12L and 16L in egg-laying characteristics and colony development. In case of illumination during mating periods, intensity of 1000 lux was more effective than at intensity of 100 lux and 2000 lux in mating B. ignitus queen. Mating temperature and care temperature of queen before mating favorable for B. ignitus queen were 22-25? and 19?, respectively. The period need to mating B. ignitus queen was 3 days, and the number of queen suitable per mating cage of 55× 45× 65 ㎝ was 30. The effect of CO2-treatment on interrupting diapause of B. ignitus was examined to provide a means for year-round rearing of the bumblebee. When mated young queens were exposed to 65% or 99% CO2 for 30 min daily during two consecutive days, oviposition rate increased to 75% and 77%, respectively, comparing 50% in CO2-untreated queens. At the same time, the days needed to first oviposition shortened to 17-18 days in CO2-treated queens, comparing to 30 days in CO2-untreated queens. CO2-treatment at the second day after mating was appropriate to the oviposition and colony development. CO2-treatment showed a positive effect on the oviposition and colony development, but less than them of over-wintered queen in numbers of produced progeny. It can be concluded that CO2-treatment to B. ignitus is insufficient to produce commercial grade bumblebee colony in spite of its capability for promoting oviposition, because the treatment failed to form a big colony. Artificial hibernation is essential for year-round rearing of the bumblebee, B. ignitus that undergoes one generation per year. It is known that keeping the queens in low temperature for two or three months is effective to terminate their diapause and develop the colony. Temperature, time and surroundings to keep the queens during artificial hibernation were investigated. Among the tested temperatures, -2.5°C, 0°C, 2.5°C, and 5°C, the optimum temperature was 2.5°C. At the temperature (2.5°C), survival rate after chilling of the queens was high and colony development thereafter was enhanced. The proper time to initiate chilling queen was 10 to 14 days after adult eclosion, and the survivability of the queens after chilling was good during the upper period. For the surrounding to keep the queen during artificial hibernation, we proposed the method to preserve them in a bottle filled with perlite and keep it around 80% R. H.
The bumblebee, Bombus ignitus (Hymenoptera: Apidae), is a valuable natural resource that is one of the most notably utilized for greenhouse pollination in Korea. In order to understand the nature of genetic relationships, gene flow, and population structure of the species we sequenced a partial COI gene of mitochondrial DNA (mtDNA) corresponding to “animal barcode” region and the complete internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA (nrDNA) collected from Korean localities. Although the 658-bp long mtDNA sequence provided only six haplotypes with the maximum sequence divergence of 0.61% (4 bp), the ITS sequences provided 84 sequence types with the maximum sequence divergence of 1.02% (21 sites), confirming better applicability of the ITS sequences to the study of intraspecific variation. The complete ITS2 sequences of B. ignitus were shown to be longest among known insects, ranging in size from 2,034 bp ~ 2,052 bp, harboring two duplicated repeats. Overall, a very high per generation migration ratio, a very low level of genetic fixation, and no discernable hierarchical population/ population group were noted to exist among populations of B. ignitus on the basis of both molecules, thus suggesting that the B. ignitus populations on the Korean peninsula are panmictic, which is consistent with our understanding of the dispersal capability of the species
Bumblebees are widely used to pollinate crops in greenhouses and fields. Here we firstly developed an apparatus for the oviposition induction of the bumblebee Bombus ignitus using electricity. The apparatus consists of boxes for colony initiation, part of temperature control, part of heat transfer, and moving shelf. The result shows that the rates of oviposition and colony foundation in the newly developed apparatus are respectively 3.9% and 5.2% higher than in the existing apparatus using hot water. More importantly, the newly developed apparatus is 75% cheaper in costs and can more save energy than existing apparatus. These results indicate that the newly developed apparatus could serve as an effective apparatus for the oviposition induction of B. ignitus.
We report for the first time the occurrence of DWV-infected bumble bees (Bombus ignitus). For the present study, the detection of DWV virus from the female and male bumble bee was investigated in the same colony. The Deformed wing virus (DWV) of honeybee (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. Using specific RT-PCR protocols for the detection of DWV followed by sequencing of the PCR products we could demonstrate that the bumble bees were indeed infected with DWV. The virus was detected from Bombus ignitus, and its partial DWV gene was cloned and sequenced. The partial DWV gene encoding the polyprotein is 711-nt of 235 amino acid residues. The deduced nucleotide sequence of the polyprotein partial gene of DWV showed 96.9%, 96.2%, 96.8%, and 96.5% homology to other structure polyprotein partial gene of DWV from insects, respectively. Phylogenetic analysis further conformed that the deduced nucleotide sequence of the polyprotein partial gene of DWV divided to the outside tree. We describe the first time that presence of Deformed wing virus(DWV) from bumble bee(Bombus terrestris) in korea using RT-PCR.
Phospholipid-hydroperoxide glutathione peroxide (PHGPx) is an antioxidant enzyme that reduces lipid hydroperoxides in biomembranes. Here, we cloned and characterized cys-PHGPx from the bumblebee Bombus ignitus (Bi-PHGPx). The Bi-PHGPx gene consists of 4 exons, encoding 168 amino acid residues with a canonical cys-codon at residue 45 and active site residues Gln82 and Trp134. Recombinant Bi-PHGPx, expressed as a 19 kDa protein in baculovirus-infected insect cells, exhibited enzymatic activity against PLPC-OOH and H2O2 using glutathione as an electron donor. Tissue distribution analyses showed the presence of Bi-PHGPx in all tissues examined. Bi-PHGPx transcripts were upregulated by stresses, such as wounding, H2O2 exposure, external temperature shock, and starvation. Under H2O2 overload, the RNA interference (RNAi)-induced thioredoxin peroxidase (BiTPx1)-knock-down B. ignitus worker bees showed upregulated expression of Bi-PHGPx in the fat body. These results indicate that Bi-PHGPx is a stress-inducible antioxidant enzyme that acts on phospholipid hydroperoxide and H2O2.