Atmospheric concentrations of CO2, a major cause of global warming, have been rising due to industrial development. Carbon capture and utilization, which has been introduced to cover such disadvantages, makes it possible to capture CO2, recycling byproducts as resources. However, CCU also requires large amounts of energy in order to induce reactions. Among existing CCU technologies, the process for converting CO2 into CaCO3 requires high temperature and high pressure as reaction conditions. This study proposes a method to fixate CaCO3 stably by using relatively less energy than existing methods. Following the experiment, the resulting product CaCO3 was analyzed with FT-IR; FE-SEM image and XRD patterns were also analyzed. The results showed that the CaCO3 crystal product was high-purity calcite.
This experiment was carried out to figure out the CO2 biomass and the growth response of Chinese cabbage and radish grown under the condition of high temperature and high CO2 concentration to provide the information for the coming climatic change. Chinese cabbage and radish were cultivated in spring and autumn seasons under 4 treatments, 'ambient temp.+ambient CO2 conc.', 'ambient temp.+elevated CO2 conc.', 'elevated temp.+ ambient CO2 conc.', and 'elevated temp. +elevated CO2 conc.'. The 'elevated temp,' plot was maintained at 5 higher than 'ambient temp. (outside temperature)'and the 'elevated CO2 cone.' plot was done in 650 ppm CO2. The growth of spring-sown Chinese cabbage was worse than autumn-sown one, and was affected more by high temperature than high CO2. concentration. The CO2 biomass of Chinese cabbage was lower as 25.1-39.1 g/plant in spring-sown one than 54.8-63.4 g/plant of autumn-sown one. Daily CO22 fixation ability was not significantly different between spring- and autumn-sown Chinese cabbage as 1.9-2.9, 2.7-3.1 kg/10a/day, respectively. The CO2 biomass of radish were 87.4-104.6 /plant in spring-sown one and 51.3~76.4 g/plant in autumn-sown one. Daily CO2 fixation ability of radish were 6.2-10.1 kg/10a/day in spring-sown one and 4.6-6.9 kg/10a/day in autumn-sown one.
A Controlled Low-Strength Materials (CLSM) is suitable for mine backfilling because it does not require compaction owing to it high fluidity and can be installed quickly. Therefore, a CLSM utilizing CO2-solidified Circulating Fluidzed Bed Combustion (CFBC) coal ash was developed and it’s properties were investigated, since. CO2-solidification of CFBC coal ash can inhibit exudation of heavy metals. The chemical composition and specific surface area of Pulverized coal Combustion fly ash and CFBC fly ash were analyzed. The water ratio, compressive strength and length change ratio of CLSM were confirmed. The water ratios differed with the specific surface area of the CLSM. It was confirmed that the porosity of CLSM affected its compressive strength and length change ratio.
According to a report ‘2012 Present Condition of National Household Refuse Resource Recovery Facility’, about 582,178 tons/year of household refuse were processed in the incineration plant, and 465,087 tons/year of bottom ash and 117,091 tons/year of fly ash were produced respectively. As incineration ash contains many kind of heavy metals such as soluble salt, copper and lead, it may lead to the leaching potential of heavy metals according to the environmental change, so it requires special care in landfill and recycling. In this study CO2 was injected into the bottom ash, so that environmental stability such as leaching of heavy metals was reduced and increased the possibility of CO2 fixation ability of the bottom ash was analyzed. Bottom ash of the household refuse incineration plant of I City was used as the sample of the fixation ability particle size was divided into 3 sections to analyze its components before and after carbonation using XRF. Stability of the sample was identified by the leaching test through KSLT and TCLP, and CO2 fixation ability by the DT-TGA analysis. Test results of the fixation ability shows that stabilization of the bottom ash produced in the household refuse incineration plant by carbonation is evaluated as there is little environmental problem caused by heavy metals when it is utilized into the recycled aggregate, and economic profits can be expected due to securing new agents of the supply and demand for the recycled aggregates, the greenhouse gas emission reduction by CO2 fixation.
2012년도 ‘전국 생활폐기물 자원회수시설 현황’ 에 따르면 소각장에 약 582,178톤/년의 생활폐기물이 반입되어, 바닥재 465,087톤/년, 비산재 117,091톤/년이 발생된 것으로 나타났다. 소각시설에서 배출되는 소각재는 그레이트 상에 남아있는 재(grate ash)와 그레이트 하단으로 떨어지는 재(grate siftings)가 포함된 바닥재(bottom ash) 그리고 폐열 보일러 재와 배출가스 비산재 및 부산물을 포함하는 비산재로 분류된다. 소각재에는 많은 양의 용해성 염과 구리, 납 등의 중금속을 함유하고 있어 환경의 변화에 따라 2차적으로 높은 중금속의 용출가능성을 초래할 수 있으므로 매립 및 재활용 시 주의가 요구되고 있다. 한편 생활폐기물 소각장에서 발생되는 바닥재는 주로 철, 유리, 도자기 등 재활용 가능한 성분으로 구성되어 있지만 일반폐기물로 분류되어 매립되고 있는 실정이다. 반면에 유럽의 독일, 덴마크, 네덜란드 등은 고형화, 세척, 숙성 등의 처리를 통해 바닥재를 도로 건설의 경량 골재로서 이용하거나 아스팔트 또는 콘크리트에 사용하는 등 발생된 바닥재의 60 ~ 90%를 재이용하고 있다. 본 연구에서는 ‘한국 지질자원 연구원 프론티어 무기성 폐기물의 복합처리를 통한 토건 재료화 연구’ 의 내용을 바탕으로 바닥재로부터의 중금속 용출 저감 등 환경적 안정성을 증진시키기 위한 방법으로서 CO2가스 주입을 통한 바닥재의 안정화 처리를 사용하였다. 이에 따른 중금속의 용출 결과 변화를 우리나라 폐기물 공정법상의 용출 시험법 KSLT(Korea Standard Leaching Test)와 미국 EPA의 TCLP(Toxicity Characteristic Leaching Procedure)에 의해 비교 하였으며, 바닥재 재활용에 의한 토양으로의 중금속 용출 영향을 기존 연구에 추가하여 실시하였다. 또한 온실가스인 CO2가스가 바닥재에 고용되는 효과를 실험에 의해 측정하였으며, 이에 따른 부가가치 가능성을 평가하였다.
보리(Hordeum vulgare)의 유묘이 14 co2 를 10분 및 30분간 처리한 후 잎을 채취하여 아미노산, 당, 인산염 및 유기산과 같은 수용성 대사물질을 분석하였다. 배양기간에 따른 label 정도는 비슷하였으나 종류와 양에 있어서는 차이가 있었다. 10분 처리시에는 아미노산 분획보다 중성분회(당, 인산염에스퇴르 및 유기산)에서 label 양이 4.5배 증가하였으나 30분 처리시에는 1.7배로 감소하였다. 당분획에 있어서는 처리 시간이 길어짐에 따라 label 양이 약간 증가 하였으나 아미노산 분획에 있어서는 양과 질적으로 label 양이 현저히 증가하였다. 탄소 동화율은 10분에서 30분으로 길어질수록 현저히 감소하였다(0.125대 0.034와 0.042 mole CO2 /mg 엽록소/분).