‘탄소중립’에 대한 관심이 높아짐에 따라 CO2를 농업적으 로 이용하기 위한 시도가 증가하고 있다. 본 실험은 발전소에 서 부산물로 배출되는 CO2를 포집하여 액화·정제 후 시설 엽 채류의 생육 및 생산성 증대를 위한 시비용 CO2로의 활용 가 능성을 평가하기 위해 수행되었다. 경상남도 하동지역의 부추, 취나물, 미나리 농장에 드라이아이스가 공급되었고 각 농 장의 온실 중 하나의 온실은 대조군, 하나의 온실은 CO2 처리 구로 사용되었다. CO2의 시비는 자체 제작한 장치를 사용하 여 드라이아이스에서 승화된 가스를 온실에 공급했다. 부추 온실은 대조군과 CO2 처리에서 온실 내 CO2 농도의 차이가 없었고 두 온실 모두 높은 CO2 농도를 보였다. 반면에 취나물 과 미나리 온실에서는 CO2 시비 처리에서 높은 CO2 농도가 측정되었다. 취나물 및 미나리의 생육은 CO2 시비 처리구에 서 유의성 있게 증가하였으며 수확량도 각각 36%와 25%로 증가하였다. 경제성 분석 결과, 취나물 농가에서는 소득률이 증가하였지만, 부추와 미나리 농가는 감소하는 것으로 나타 났다. 따라서 화력발전소에서 부산물로 발생한 드라이아이스 의 이용은 시설 엽채류의 생산성을 높일 수 있었다
The stereotype of flexible MOFs(Amino-MIL-53) and carbonized porous carbon prepared from renewable resources is successfully synthesized for CO2 reduction application. The textural properties of these microporous materials are investigated, and their CO2 storage capacity and separation performance are evaluated. Owing to the combined effects of CO2-Amino interaction and its flexibility, a CO2 uptake of 2.5 mmol g−1 is observed in Amino-MIL-53 at 20 bar 298 K. In contrast, CH4 uptake in Amino-MIL-53 is very low up to 20 bar, implying potential sorbent for CO2/CH4 separation. Carbonized samples contain a small quantity of metal residues(K, Ca, Mg, S), resulting in naturally doped porous carbon. Due to the trace metal, even higher CO2 uptake of 4.7 mmol g−1 is also observed at 20 bar 298 K. Furthermore, the CH4 storage capacity is 2.9 mmol g−1 at 298 K and 20 bar. To evaluate the CO2 separation performance, the selectivity based on ideal adsorption solution theory for CO2/CH4 binary mixtures on the presented porous materials is investigated.
아민 흡수제를 이용한 CO2 포집용 충전탑 기술의 문제점으로 제기되고 있는 범람, 거품, 과다한 재생 에너지 등을 해결하기 위하여 최근 접촉막 기술이 주목받고 있다. 연구자들 대부분은 고분자 분리막을 이용하여 접촉막 기술을 개발 하고 있으며, 장기 운전 시 팽윤 현상에 의한 성능저하 문제가 제기되고 있다. 세라믹은 고분자 소재에 비해 화학적, 열적안정성이 뛰어나기 때문에 아민 흡수 제에 대한 팽윤 현상을 방지할 수 있다. 본 연구에서는 세라믹 중공사 접촉막의 기공구조 제어 기술을 개발하고, CO2 포집 특성을 분석하였다.
CO2 분리막 기술은 화학 유해 물질 사용·배출이 없는 친환경 기술로, 규모나 위치, 적용처별 사업 다각화가 가능한 기술이다. 전력연구원에서는 저비용 분리막 대량 생산 기술을 확보하고, 적층 방식의 분리막 모듈 상용화를 추진 중에 있다. Lab-scale의 분리 모듈의 성능 평가 결과를 기반으로 96% 순도, 90% 포집률을 동시달성하는 분리막 공정의 설계를 완료하였다. 현재 ’17년 8월 준공을 목표로 세계 최대 규모인 1MW급 CO2 분리막 테스트 베드를 당진 화력에 건설진행 중이다.
이산화탄소를 분리하기 위한 한 방법으로 고분자 기체 분리막을 이용한 기술이 발전하고 있다. 다양한 폴리머 멤브레인 재료 중에서도 폴리이미드(PI) 는 우 수한 열 및 기계적 특성, 좋은 화학적 안정성과 높은 가스 수송 특성을 가지고 있다. 하지만 고분자 분리막은 아직 낮은 투과, 선택성을 가지고 있기 때문에 이를 높이기 위해 많은 연구가 이루어지고 있다. 한편 고무상 고분자인 폴리에 틸렌글리콜 (PEG)은 이산화탄소에 대한 높은 친화성으로 우수한 이산화탄소 분리성능을 가지고 있다. 이에 본 연구에서는 높은 자유 체적을 가지는 durene group을 포함한 PI와 PEG를 공중합 시켜 높은 소재의 기체 투과성능을 확인하고 이 소재를 이용하여 중공사 제조 변수를 조절에 따른 기체 투과도를 확인 하였다.
CO2 포집을 위한 아민 흡수 공정은 현재 가장 상용화에 근접한 기술로 알려져 있다. 하지만 흡수탑 장치의 규모가 크고, 흡수제 재생을 위한 에너지가 과다하게 필요로 한다는 문제점이 제기되고 있다. 이러한 문제를 해결하고, 기존 공정에 비해 고효율-저에너지 기술인 접촉 분리막 공정의 연구가 주목받고 있 다. 본 연구에서는 화학적, 열적 안정성이 높은 세라믹 소재를 이용하여 중공사 막을 제조하고, 이를 모듈화하여 기-액 접촉 분리막 공정에 적용한 실험을 수행 하였다.
이산화탄소를 분리하기 위한 한 방법으로 고분자 기체 분리막을 이용한 기술이 발전하고 있다. 다양한 폴리머 멤브레인 재료 중에서도 폴리이미드(PI) 는 우수한 열 및 기계적 특성, 좋은 화학적 안정성과 높은 가스 수송 특성 을 가지고 있으나 고분자 분리막은 아직 낮은 투과, 선택성을 가지고 있다. 때문에 이를 높이기 위해 많은 연구가 이루어지고 있다. 본 연구에서는 이산화탄소에 대한 높은 친화성으로 우수한 이산화탄소 분리성능을 가지고 있는 고무상 고분자인 폴리에틸렌글리콜(PEG)을 이용하였고 높은 자유 체적을 가지는 durene group을 포함한 PI와 PEG를 공중합 시켜 높은 소재의 기체 투과성능을 확인하고 이 소재를 이용하여 중공사 제조 변수를 조절에 따른 기체 투과도를 확인 하였다.
Forward osmosis (FO) is an emerging technology to produce clean water with low energy consumption. The key elements in FO are a water-permeable membrane, and a draw solution inducing an osmotic pressure difference across the membrane. A desirable draw solution should result in a high osmotic pressure difference,together with an internal concentration polarization as low as possible.The draw solution should also have a very low toxicity,particularlywhen usedin drinking water purification. Furthermore, it is important to be easily recovered from a feed solution after FO operation for a certain period time. The multiple requirements make it difficult to develop an effective draw solution. In the present study, thermally and pH-sensitive oligomeric mixtures are used as potential draw solutions for FO system.
산업화로 인한 온실가스의 발생량이 증가 하면서 지속적인 온실가스 감축노력이 이루어 지고 있다. 그 중 CO2는 대표적인 온실가스로 세계 기후변화 협약 등에 의한 규제가 요구 되고 있으며 CO2를 분리 회수 및 저장(Carbon Capture and Storage : CCS)기술의 중요성이 커지고 있다. 연소 후 포집기술에는 흡착법, 흡수법, 분리막법 등이 있으며 그 중 분리막법은 CO2 포집 단가 및 플랜트 비용면에서 잠재성이 크다. 본 연구에서는 PES 중공사막을 이용하여 CO2 순도회수율 90%을 목표로 이산화탄소 분리기술을 연구 하였으며 전산모사를 통한 분리막 공정을 설계하였다.
Activated carbon fibers(ACFs) were prepared in this research from a polyacrylonitrile(PAN) precursor with the KOH(1~4 M) pretreatment and following activation at 800oC in a lab-scale. The sample ACFs were characterized according to their textural properties, and evaluated for CO2 adsorption capacity. The surface area and pore volume of ACFs increased according to the pretreatment with KOH; for example, 4M-KOH aqueous solution resulted in 1552.5 m2/g specific surface area and 0.605 cc/g pore volume. It also showed high CO2 adsorption amount(3.11 mmol/g) which showed a proportional increase with reaction pressure.
CO2 저장소의 허가가 사실상으로 전통적 유형의 계획확정인지 아니면 새로운 승인유형의 성립을 주목할 수 있는지, 또 다른 문제가 제기되고 있다.
이러한 경우 승인유형에서 카탈로그의 다양화가 요구되는 것으로 보인다. 그러나 여기에서는 아마도 이미 실현된 개발의 명백한 명명이 문제이다. 여기에서는 그런 현상을 인식하고, 표시하며 사실적인 문제상황에 상당한 체계화를 가져오는 행정법학의 급부능력이 나타난다.
향후 우리나라 CCS 관련 현행 개별법을 제정할 때에도 계획확정절차에 관한 규정을 두는 방안을 면밀히 검토할 필요가 있다. 먼저 CO2 수송관의 설치, 운영 및 본질적 변경을 하기 위해서는 개별 CCS 법에 따라 계획 확정이 필요할 것이다. 둘째로 CO2 저장소의 설치, 운영 및 중대한 변경도 마찬가지로 개별 CCS 법에 따라 계획확정을 받아야 할 것으로 본다. 물론 이와 같은 계획확정을 통해 개별 CCS 법에 따라 CO2 수송관과 저장소를 허용하는 것은 공익의 관점에서 확정되고(허가효), 다른 행정청의 허가는 필요없을 것으로 본다(집중효).
청문절차에서 무엇보다 계획에 대한 이의와 행정청의 의견을 사업시행자, 행정기관, 이해관계인과 함께 토의하는 절차는 계획의 설치와 관련하여 제기된 문제들을 이해관계인 전체가 함께 모여서 상세하게 문제들을 협의하는 절차로서, 토의과정에서 갈등을 조정되어 사후에 일어날 수 있는 분쟁을 사전에 예방할 수 있을 것으로 본다. 이것이 바로 CCS 기술의 사회적 수용성의 문제를 해결하는 실마리가 될 것이다.
Adsorption is one of the most efficient method for the separation of low level carbon dioxide. In order to enhance the adsorption capacity, a few additives such as alkali hydroxides were combined with the zeolitic sorbents. As a result of the experimental examination by applying the CO2 flow of 3000 ppm, the composite sorbent showed the improved quality to a certain degree and the added binder was also found to contribute to better adsorption.
Mineral carbonation is one of the safest permanent carbon dioxide sequestration methods. Carbon Capture & Utilization (CCU) is a process that utilizes available resources by removing carbon dioxide in a method of mineral carbonation. It can be applied to industries producing high carbon dioxide emissions. This study aims to investigate the absorption performance of carbon dioxide at high concentrations. Calcium hydroxide suspension was used as an absorbent. In addition, NaOH and Mg(OH)2 were used as additives. Carbon dioxide removal efficiency with NaOH increased from 30% to 90% when the additive amount was increased from 1wt% to 3wt%. In the case of Mg(OH)2, carbon dioxide absorption efficiency was minimal regardless of the additive amount. In addition, the solid byproducts werec onfirmed by X-ray diffraction spectra and SEM images.