현재 철근콘크리트 분야에서 부재의 철근을 FRP 보강재로 대체하기 위한 연구가 활발히 진행되고 있다. CFRP(Carbon Fiber Reinforced Polymer)는 특히 내화학성이 우수하여 보수 및 보강재로 큰 장점을 가지 며, RC 구조물의 보강재로 주로 사용되고 있다. CFRP 그리드의 경우 수지를 이용하여 섬유를 결합한 형 태를 가진다. 이러한 형태는 외부의 영향에 의해 수지 혹은 섬유의 손상으로 강도 저하가 발생할 수 있다. CFRP 그리드의 산성에 대한 저항성을 침지기간에 따른 인장강도 변화량 및 SEM과 무게 변화를 통해 확인하고자 한다. 따라서 Ph 농도 1~3의 강산성에 CFRP 그리드를 침지시키는 방식을 통해 내 화학 실험을 진행한다. 황산()을 이용하여 산성 용액을 제작한 후 실험을 진행하였다. 실험은 항온장치에서 60℃의 온도로 침지기간은 30, 60, 90, 180일로 한다. 그리드의 인장강도 변화를 확인하기 위하여 기간 별 시편의 수는 5개로 하며 침지시키지 않은 그리 드를 포함하여 총 25개의 시편을 실험한다. 인장실험을 통해 변형률 및 인장강도 변화를 확인한다. 그 리드의 섬유 및 수지의 변화 확인을 위해 실험진행 전 그리드의 무게를 측정 및 SEM(전자주사현미 경) 데이터 확보 후 실험을 진행한다. 기간별 침지된 그리드와 비교를 통해 기간별 섬유 및 수지의 영 향 정도를 확인한다. 본 연구에서는 산성이 CFRP 그리드에 미치는 영향을 조사하기 위해 인장강도, SEM, 무게 변화를 통해 연구하였으며, 이를 통해 산성의 영향을 받는 CFRP 그리드 부재의 안정성을 평가하고자 한다.
이 연구는 코르크보드를 보강하여 건축부재 및 놀이기구의 안전부재 등으로 폭넓게 활용할 것을 목적으로 코르크보드의 중층에 금속, 유리섬유, 탄소섬유를 삽입하여 보강한 3종의 코르크복합보드를 제조하였고, 코르크복합보드의 수분흡수에 따른 치수안정성 및 접착층 박리성능을 조사하였다. 코르크복합보드의 흡수율은 0.37% - 0.45%의 범위에 있었고, 코르크보드에 비해 0.61배 - 0.74배의 낮은 값을 나타내었다. 코르크복합보드의 두께팽창률은 0.92% - 1.58%의 범위에 있었고, 코르크보드 보다 1.4 - 2.4배의 높은 값을 나타내었다. 그러나 이 값들은 일반 목질보드보다 현저히 낮았고, KS규격의 12%이하를 하회하는 것이 확인되었다. 코르크복합보드의 준내수 및 내수침지박리시험후의 접착층박리율은 0%로 전혀 접착층의 박리가 일어나지 않아 우수한 내수성을 나타내었고, 흡수율과 흡수두께팽창률은 상온침지에 비해 다소 증가하였으나, 목질보드에 관한 KS규격을 하회하는 우수한 치수안정성을 나타내는 것이 확인되었다.
국내 건설현장에서 장스팬 구조물이 증가함에 따라 콘크리트와 강재를 조합한 충전형합성보의 적용이 증가하고 있 다. 충전형합성보는 경제적이며 시공성이 향상되고 콘크리트 축열효과에 따라 내화성도 우수하다. 충전형합성보 내부에 휨성능 을 향상시키기 위해 Re-bar로 보강하여 사용한다. 이는 콘크리트 균열에 의해 부식 되어 내력저하를 유발한다. CFRP Re-bar는 경량이며 내부식성이 우수하다. 그러나 임계온도가 250℃로 낮기 때문에 화재에 취약으로 적절한 내화피복재를 적용해야된다. 따라서 열전달해석을 통해 내부 CFRP Re-bar가 보강된 충전형합성보의 온도분포를 확인하였다. 온도 상승에 따른 휨내력을 산 정하여 피복두께를 제안하고자 한다. 해석결과 단면크기에 상관없이 콘크리트 피복두께 40mm와 뿜칠내화피복재 20mm를 적용 하면 표준화재에서 3시간 내화성능을 확보하는 것으로 평가되었다.
Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.
Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.
The prime objective of this research was to study the influence of hot-pressing pressure and matrix-to-reinforcement ratio on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon-composite. Secondary objectives included determination of the physical and mechanical properties of the resulting composite. The ‘hybrid carbon-fiberreinforced mesophase-pitch-derived carbon-matrix’ composite was fabricated by hot pressing. During hot pressing, pressure was varied from 5 to 20 MPa, and reinforcement wt% from 30 to 70. Densification of all the compacts was carried at low impregnation pressure with phenolic resin. The effect of the impregnation cycles was determined using measurements of microstructure and density. The results showed that effective densification strongly depended on the hot-pressing pressure and reinforcement wt%. Furthermore, results showed that compacts processed at lower hot-pressing pressure, and at higher reinforcement wt%, gained density gradually during three densification cycles and showed the symptoms of further gains with additional densification cycles. In contrast, samples that were hot-pressed at moderate pressure and at moderate reinforcement wt%, achieved maximum density within three densification cycles. Furthermore, examination of microstructure revealed the formation of cracks in samples processed at lower pressure and with low reinforcement wt%.
In this study, carbon fiber reinforced plastic and aluminum foam used in impact absorber are assembled and modelled. These models are investigated by impact simulation and verified by experimental data. Impact energies of 30 J, 60 J and 100 J are applied on these specimens by striker. For example the experiment for impact energy of 30 J is done and verified by referring to analysis result. As the structural safeties of these assembled composite materials can be anticipated through this study result, these simulation analysis results can be applied into real field.
본 논문에서는 탄소 섬유 강화 플라스틱 샌드위치 복합재료의 시뮬레이션 해석을 통해 기계적 충격특 성에 대해 연구를 하였다. 스트라이커에 30 J, 60 J, 100 J의 충격에너지를 부여하여 고정 된 시험편에 충격을 가했다. 시뮬레이션 해석 방법은 ANSYS를 이용하여 실제와 같은 경계조건을 주며 유한요소해 석을 진행하였다. 그 결과는 100J의 충격에 에너지를 가해졌을 때 스트라이커가 시험편을 완전히 관통하는 모습이 보이고 충격에너지 30J과 60J일 때는 스트라이커가 시험편을 관통하지 않았다. 본 연구의 결과로 탄소 섬유 강화 플라스틱과 알루미늄 폼으로 조립한 복합재료의 구조적 안전성을 예측과 구조적 안전성이 높이는 사료가 된다.