Recently, separation membranes have been applied to fields such as water supply, sewage treatment, gray water reuse, and air pollution control. Chemical cleaning technology is attracting attention among the methods of reusing these expensive separation membranes. It was found that the separation membrane could be regenerated using chemical cleaning. Specifically, it was found that the use time of the separation membranes regenerated by chemical cleaning was sustainable for more than 1,700 hours. Additionally, it was found that the flux recovery ratio after chemical cleaning was maintained at least 60%. In addition, the flux recovery ratio of HYDREX 4710, an organic membrane cleaner, and 4703, an inorganic membrane cleaner, was 76% and 62%, respectively, showing the highest flux recovery ratio among the chemicals used. Considering that the target raw water of this study is biological secondary treatment water, it was suggested that chemical cleaning could be actively used to regenerate separation membranes in future water treatment.
본 연구는 (주)퓨어엔비텍에서 제조한 multi-bore 형태의 중공사 막을 이용하여 오염된 원수의 투과 후 오염된 막의 재사용을 위해 화학적 세정효율에 대해 파악하고자 하였으며 이를 위해 제조된 중공사 막의 재료는 내화학성이 좋은 PSf (polysulfone) 소재를 사용하였다. 실험은 소혈청 알부민(BSA)을 이용한 내오염성 평가 및 염기성 용액인 차아염소산나트륨 (NaOCl), 산성 용액인 구연산(citric acid)을 이용해 장기 함침하여 내화학성 평가를 진행하였다. 시간에 따른 수투과도와 인장강도를 측정하여 분리막의 기계적 강도와 성능의 감소에 대한 결과를 관찰하였다. 이후 소혈청 알부민으로 오염된 막의 화학적 용액에 따른 역세척 후 회복효율을 파악하였다. PSf 중공사 막은 뛰어난 내화학성을 가졌으며 화학적세척결과 차아염소 산나트륨의 효율이 높음을 확인하였다.
하⋅폐수처리 MBR 공정을 운영함에 있어서 특정 오염물에 따른 멤브레인 회복률 저하를 자주 경험하게 되며, 이에 따른 화학세정 시 막오염 물질 제거에 필요한 약품선택에 많은 어려움을 겪는다. 본 연구의 목적은 하폐수 성상의 MBR 처리 시 발생할 수 있는 Ca 막오염에 대해서 다양한 세정약품 적용을 통한 멤브레인의 회복률 증대 방안을 찾고자 하는 것에 있다. 본 연구는 K 폐수처리시설에서 1년간 운영한 (주)에코니티의 분리막을 샘플링하여 투과도 측정 및 막표면 분석 후 막오염 물질을 우선적으로 확인하였으며, 이에 따른 각종 화학약품의 적용실험을 통하여 최적약품 도출 및 적용성을 평가하고자 하였다.
An effective cleaning method for Ni removal in Ni-induced lateral crystallization(Ni-MILC) poly-Si TFTs and their electrical properties are investigated. The HCN cleaning method is effective for removal of Ni on the crystallized Si surface, while the nitric acid treatment results decrease by almost two orders of magnitude in the Ni concentration due to effective removal of diffused Ni mainly in the poly-Si grain boundary regions. Using the HCN cleaning method after the nitric acid treatment, re-adsorbed Ni on the Si surfaces is effectively removed by the formation of Ni-cyanide complexions. After the cleaning process, important electrical properties are improved, e.g., the leakage current density from 9.43 × 10−12 to 3.43 × 10−12 A and the subthreshold swing values from 1.37 to 0.67 mV/dec.
In the present study, the impact of RO polyamide layer by long-term chemical exposure was evaluated. Basic cleaning chemicals such as NaOH increased the pure water flux and salt passage of RO membrane up to 1.6 times and 2 times, respectively. In contrast, membranes exposed to acidic chemicals such as HCl have experienced no discernible change of permeability, which indicated that basic chemicals caused the more serious damage to RO polymeric layers. However, XPS analysis showed that both membranes were experienced significant damages on cross-linking of polyamide structures. It can be concluded that basic cleaning chemicals induced the enlarged pore structure due to electrostatic repulsion between damaged polymers, while acidic chemicals caused less performance deterioration by shrinkage of the polyamide structure.
In water treatment process using microfiltration membranes, manganese is a substance that causes inorganic membrane fouling. As a result of analysis on the operation data taken from I WTP(Water Treatment Plant), it was confirmed that the increase of TMP was very severe during the period of manganese inflow. The membrane fouling fastened the increase of TMP and shortened the service time of filtration or the cleaning cycle. The TMP of the membrane increased to the maximum of 2.13 kgf/cm2, but it was recovered to the initial level (0.17 kgf/cm2) by the 1st acid cleaning step. It was obvious that the main membrane fouling contaminants are due to inorganic substances. As a result of the analysis on the chemical waste, the concentrations of aluminum(146-164 mg/L) and manganese(110-126 mg/L) were very high. It is considered that aluminum was due to the residual unreacted during coagulation step as a pretreatment process. And manganese is thought to be due to the adsorption on the membrane surface as an adsorbate in feed water component during filtration step. For the efficient maintenance of the membrane filtration facilities, optimization of chemical concentration and CIP conditions is very important when finding the abnormal level of influent including foulants such as manganese.
기존 정수처리 공정은 나날이 발현빈도 및 농도가 증가하고 있는 신규오염물질을 대처할 수 없는 실정이다. 이를 위하여 다양한 고도처리공정이 도입되고 있으며 이 중 막여과공정은 최근 설치비율이 급격하게 상승하고 있다. 본 연구에서는 망간이 발현되고 있는 U정수장을 대상으로 MF막을 설치한 파일롯 플랜트를 운영하여, 막여과공정에서의 화학세척조건에 따른 회복성능을 평가하고 이온분석을 실시하였다. 이는 망간발현지역을 대상으로 한 최적의 분리막 세척조건 도출을 위한 기초자료로 활용할 수 있다.
본 연구는 Y 정수장의 세라믹 정밀여과막 공정을 위한 최적의 약품세척 조건을 도출하고자 수행되었다. 세라믹 막 공정의 전처리로 오존과 응집공정이 있는 A계열의 경우 응집공정만 있는 B계열에 비해 9배 정도 잦은 약품세척(CIP)를 실시하였다. 이는 전처리 공정의 차이로 인하여 A와 B계열의 막오염현상이 다르게 나타난 근본적인 원인 이외에 막제조업체가 제시한 CIP 방법이 부적절한 것으로 조사되었다. 즉, CIP 회복률이 보정여과유속이 아니라 보정차압을 기준으로 계산되어 과대평가되었을 뿐만 아니라 구연산이 철산화물에 의한 파울링을 효과적으로 제거하지 못했기 때문이었다. 따라서 1단계 산세척 약품종류를 달리하여 CIP 효율을 평가한 결과 황산(0.1 N)과 구연산(1%)를 혼합하여 사용한 경우 회복률이 가장 높았고, 황산(0.1 N)만을 사용한 경우 회복률이 가장 낮은 것으로 나타났다. 그러나 황산의 농도를 0.3 N로 높인 결과 산세척 효율은 증가하였으나 알칼리세척 회복률이 낮아져 총회복률은 0.1 N 황산을 사용한 것과 유사하였다. 산과 알칼리세척 순서를 바꿔서 CIP를 수행한 결과 산세척을 먼저 수행시 CIP 효율이 더 높은 것으로 나타났다.
반도체 세정공정에서 염기성 세정액(SCI, Standard cleaning 1, NH4OH + H2O2 + H2O)은 공정상 발생되는 여러 오염물 중 파티클의 제거를 위해 널리 사용되고 있는데, SCI 조성중 NH4OH양에 따라 세정 중 실리콘의 식각속도를 증가시킨다. 이 연구에서는 SCI 세정이 CZ(Czochralski)와 에피 실리콘 기판 표면에 미치는 영향을 단순세정과 연속적인 산화-HF 식각-SCI 세정공정을 통해 관찰되었다. CZ와 에피 기판을 80˚C의 1 : 2 : 10과 1 : 1 : 5 SCI 용액에서 60분까지 단순 세정을 했을 때 laser particle scanner와 KLA사의 웨이퍼 검색장치로 측정된 결함의 수는 세정시간에 따라 변화를 보이지 않았다. 그러나 CZ와 에피 기판을 10분간 SCI 세정후 900˚C에서 산화 HF식각공정을 4번까지 반복하였을 때 에피 기판 표면의 결함수는 감소하는 반면에 CZ기판에서는 직선적으로 증가하였다. 반복적인 산화-HF 식각-XCI 세정공정을 통해 생성된 CZ기판 표면의 결함은 크기가 0.7</TEX>μm 이하의 pit과 같은 형상을 보여주었다. 이들 결함은 열처리 중 CZ 기판내와 표면에 산화 석출물들이 형성, 반복적인 HF 식각-SCI 세정공정을 통해 다른 부위에 비해 식각이 빨리 일어나 표면에 생성되는 것으로 여기어 진다.