Heavy metal wastewater containing cobalt (Co2+) has received more attention as an environment issue, which is released from electroplating processes, battery materials industries, nuclear power plants, etc. Especially, cobalt exposed to high-temperature and high-pressure environment during the operation of a nuclear power plant to form corrosion products and forming a chalk river unidentified deposit (CURD) along with radioactive materials generated in cooling water pipes. Cobalt present in the oxide film is mainly Co-60, which emits radiation and causes increased radiation exposure to workers, and efficient management is essential. In this study, we demonstrated the performance of copper hexacyanoferrate (CuHCF) electrodes in a capacitive deionization (CDI) system for Co2+ ions removal. The structure and chemical status of CuHCF used as an electrode material were characterized, and electrochemical properties were evaluated. This study showed that Co2+ ions could be efficiently removed in aqueous solutions using CuHCF electrodes. It has been experimentally shown that the ion removal mechanism is driven by the insertion of Co2+ ions within the CuHCF lattice channels. The deionization capacities in 20 and 50 mg-Co2+ L-1 aqueous solutions were 141.62 and 156.85 mg g-1, respectively, and the corresponding charge efficiencies (Λ) were 0.55 and 0.68, respectively. Thus, we suggest that an electrochemically driven process using CuHCF can usefully remove Co2+ ions from wastewater.
본 연구는 양액 내 존재하는 다량 영양소의 농도를 실시간으로 측정하기 위해 이온 선택 전극 (ISE) 으로 구성된 임베디드 시스템의 개발을 보여준다. NO3, K 및 Ca 이온을 감지하기위한 PVC ISE, H2PO4를 감지하기위한 코발트 전극, 기준 전극, 샘플 용액이 담기는 챔버, 펌프 및 밸브를 사용하여 측정하는 시스템으로 구성된다. 양액 샘플양 조절과 데이터 수집을 위해서 데이터 Due 보드가 사용되었고, 각각의 샘플 측정 전에, 측정 중 발생하는 드리프트를 최소화시키기 위해 2 점 정규화 방법을 사용하였다. PVC 멤브레인을 기반으로 한 NO3 및 K 전극의 농도 예측 성능은 표준 분석기의 결과와 근접한 일치 (R2 = 0.99) 나타내며 만족스러운 결과를 나타냈다. 하지만, Ca Ⅱ 이온 투과체 제조된 Ca 전극은 고농도 양액 농도에서 Ca 농도를 55 %로 낮게 측정하였다. 코발트 전극 기반 인산 측정은 반복측정 중에 발생한 코발트 전극의 불안정한 신호로 인해 표준 방법과 비교하여 45 ~ 155 mg / L의 인산 농도 범위에서 24.7 ± 9.26 %의 비교적 높은 오차를 나타냈다. 수경 P 감지의 예측 능력을 향상시키기 위해 코발트 전극의 신호 컨디셔닝에 대한 추가 연구가 필요함으로 판단된다.
코발트 산화물 박막을 전극으로 하여 Pt/Ti/Si 기판위에 Co3O4/LiPON/Co3O4로 구성된 전고상의 박막형 슈퍼캐패시터를 제작하였다. 각각의 Co3O4박막은 반응성 dc 마그네트론 스퍼터를 이용하여 O2/[Ar+O2] 비를 증가 시키며 성장시켰고, 비정질 LiPON 고체전해질 박막은 순수한 질소분위기 하에서 rf 스퍼터링으로 성장시켰다. 비록 벌크 타입의 슈퍼캐패시터에 비해 낮은 전기용량 (5-25mF/cm2-μm)을 가졌지만, Co3O4/LiPON/Co3O4 구조로 제작된 전고상 박막형 슈퍼캐패시터는 벌크 타입과 비슷한 거동을 나타내었다 0-2V의 전압구간, 50μA/cm2의 전류밀도에서 약 400사이클 까지 안정한 방전용량을 유지함을 관찰할 수 있었다 이러한 전고상 박막형 슈퍼캐패시터의 전기화학적 특성은 O2/[Ar+O2] 비에 의존하는데, 이러한 의존성을 구조적, 전기적 특성 및 표면특성을 분석하여 설명하였다.
코발트 폴리사이드 게이트 전극을 형성할 때, 원주형(columnar)과 입자형(granular)다결정 Si 및 비정질 Si 기판위에 Co 단일막(Co monolayer)또는 Co/Ti 이중막(Co/Ti bilayer)을 사용하여 형성한 CoSi2의 열정안정을 비교하여 기판의 결정성과 CoSi/ sub 2/ 형성방법이 열적안정성에 미치는 영향을 연구하였다. 900˚C에서 600초까지 급속열처리하였을 때 , 기판을 비정질을 사용하거나 기판에 관계없이 Co/Ti 이중막을 사용하면 열적안정성이 향상되었다, 이는 평탄하고 깨끗한 기판 Si표면과 지연된 Co확산으로 인해,조성이 균일하고 계면이 평탄한 CoSi2가 형성되었기 때문이다. CoSi2의 열적안정성에 가장 중요한 인자는 열처리 초기 처음 형성된 실리사이드의 조성 균일성과 기판과의 계면 평탄성이었다.