In semiconductor manufacturing, the circuit integrity of packaged BGA devices is tested by measuring electrical resistance using test sockets. Test sockets have been reported to often fail earlier than the expected life-time due to high contact resistance. This has been attributed to the formation of Sn oxide films on the Au coating layer of the probe pins loaded on the socket. Similar to contact failure, and known as "fretting", this process widely occurs between two conductive surfaces due to the continual rupture and accumulation of oxide films. However, the failure mechanism at the probe pin differs from fretting. In this study, the microstructural processes and formation mechanisms of Sn oxide films developed on the probe pin surface were investigated. Failure analysis was conducted mainly by FIB-FESEM observations, along with EDX, AES, and XRD analyses. Soft and fresh Sn was found to be transferred repeatedly from the solder bump to the Au surface of the probe pins; it was then instantly oxidized to SnO. The SnO2 phase is a more stable natural oxide, but SnO has been proved to grow on Sn thin film at low temperature (< 150˚C). Further oxidation to SnO2 is thought to be limited to 30%. The SnO film grew layer by layer up to 571 nm after testing of 50,500 cycles (1 nm/100 cycle). This resulted in the increase of contact resistance and thus of signal delay between the probe pin and the solder bump.
As an alternative to the W plug used in MOSFETs, a Cu plug with a NiSi contact using Ta / TaN as a diffusion barrier is currently being considered. Conventionally, Ni was first deposited and then NiSi was formed, followed by the barrier and Cu deposition. In this study, Ti was employed as a barrier material and simultaneous formation of the NiSi contact and Cu plug / Ti barrier was attempted. Cu(100 nm) / Ti / Ni(20 nm) with varying Ti thicknesses were deposited on a Si substrate and annealed at 4000˚C for 30 min. For comparison, Cu/Ti/NiSi thin films were also formed by the conventional method. Optical Microscopy (OM), Scanning Probe Microscopy (SPM), X-Ray Diffractometry (XRD), and Auger Electron Microscopy (AES) analysis were performed to characterize the inter-diffusion properties. For a Ti interlayer thicker than 50 nm, the NiSi formation was incomplete, although Cu diffusion was inhibited by the Ti barrier. For a Ti thickness of 20 nm and less, an almost stoichiometric NiSi contact along with the Cu plug and Ti barrier layers was formed. The results were comparable to that formed by the conventional method and showed that this alternative process has potential as a formation process for the Cu plug/Ti barrier/NiSi contact system.
Spring constants (displacement per unit applied load) of MEMS socket pins of given structures were computed by theoretical analysis and confirmed by the finite element method (FEM). In the theoretical analysis, the displacement of pins was calculated based on the 2-dimensional bending theory of the curved beam. For the 3-dimensional modeling, CATIA was used. After modeling, the raw data were transferred to ANSYS, which was employed in the 3-dimensional analysis for the calculation of the stress and strain and loaddisplacement The theoretical analysis and the FEM results were found to agree, with each showing the spring constants as 63.4 N/m within a reasonable load range. These results show that spring constants can be easily obtained through theoretical calculation without resorting to experiments and FEM analysis for simple and symmetric structures. For the some change of shape and structural stiffness, this theoretical analysis can be applied to MEMS socket pins.
BGA test sockets failed earlier than the expected life-time due to abnormal signal delay, shown especially at the low temperature (-50˚C). Analysis of failed sockets was conducted by EDX, AES, and XRD. A SnO layer contaminated with C was found to form on the surface of socket pins. The formation of SnO layer was attributed to the repeated Sn transfer from BGA balls to pin surface and instant oxidation of fresh Sn. As a result, contact resistance increased, inducing signal delay. Abnormal signal delay at the low temperature was attributed to the increasing resistivity of Sn oxide with decreasing temperature, as manifested by the resistance measurement of SnO2.
5~10nm 두께의 얇은 산화막 위에 α-실리콘과 Co/Ti 이중막을 순차적으로 증착하고 급속열처리하여 코발트 폴리사이드 전극을 만든 후, SADS법으로 다결정 Si을 도핑하여 MOS 커패시터를 제작하였다. 이때 drive-in 열처리조건에 따른 커패시터의 C-V 특성과 누설전류를 측정하여, CoSi2의 열적안정성과 도판트 (B 및 As)의 재분포가 Co-폴리사이드 게이트의 전기적 특성에 미치는 영향을 연구하였다. 700˚C에서 60~80초간 열처리시, 다결정 Si층의 도핑으로 우수한 C-V 특성과 낮은 누설전류를 나타냈으나, 그 이상 장시간 또는 900˚C의 고온에서는 CoSi2의 분해에 따른 Co의 확산으로 전기적 특성이 저하되었다. SADS법으로 Co-폴리사이드 게이트 전극을 형성할 때, 도판트가 다결정 Si층으로 충분히 확산되는 것뿐만 아니라, CoSi2의 분해를 억제하는 것이 매우 중요하다.
Sn-3.5g 무연합금을 Cu 및 Alloy42 리드프레임에 납땜접합 (solder joint)하고 미세조직, 젖음성, 전단강도, 시효 효과를 측정하여 비교하였다. Cu의 경우, 땜납의 Sn기지상안에 Ag(sub)3Sn과 Cu(sub)6Sn(sub)5상이, 그리고 땜납/리드프레임의 경계면에는 1~2μm 두께의 Cu(sub)6Sn(sub)5 상이 형성되었다. Alloy42의 경우, 기지상내에 낮은 밀도의 Ag3Sn상만이, 그리고 계면에는 0.5~1.5μm 두께의 FeSn2이 형성되었다. 한편, Cu에 비해 Alloy42 리드프레임에서 퍼짐면적은 크고 접촉각은 작아 더 우수한 젖음성을 나타내었으나, 전단강도는 35%, 연산율은 75%로 낮았다. 180˚C에서 1주일간 시효처리 후, Cu 리드프레임에는 계면 η-Cu6Sn5 층외에 ξ-Cu3Sn층이 성장하였고, Alloy42 리드프레임에는 기지상내에 Ag3Sn이 구형으로 조대하게 성장하였고, 계면에는FeSn2층만이 약 1.5μm로 성장하였다.
코발트 폴리사이드 게이트 전극을 형성할 때, 원주형(columnar)과 입자형(granular)다결정 Si 및 비정질 Si 기판위에 Co 단일막(Co monolayer)또는 Co/Ti 이중막(Co/Ti bilayer)을 사용하여 형성한 CoSi2의 열정안정을 비교하여 기판의 결정성과 CoSi/ sub 2/ 형성방법이 열적안정성에 미치는 영향을 연구하였다. 900˚C에서 600초까지 급속열처리하였을 때 , 기판을 비정질을 사용하거나 기판에 관계없이 Co/Ti 이중막을 사용하면 열적안정성이 향상되었다, 이는 평탄하고 깨끗한 기판 Si표면과 지연된 Co확산으로 인해,조성이 균일하고 계면이 평탄한 CoSi2가 형성되었기 때문이다. CoSi2의 열적안정성에 가장 중요한 인자는 열처리 초기 처음 형성된 실리사이드의 조성 균일성과 기판과의 계면 평탄성이었다.
Co/Ti 이중막을 급속열처리하여 형성한 CoSi2에 As+을 이온주입한 후, 500~1000˚C에서 drive-in 열처리하여 매우얇은 n+ p접합의 다이오드를 제작하고 I-V 특성을 측정하였다. 500˚C에서 280초 drive-in 열처리하였을 때, 50nm정도의 매우 얇은접합이 형성되었고, 누설전류가 매우 낮아 가장 우수한 다이오드 특성을 나타내었다. 특히, Co 단일막을 사용한 다이오드에 비해 누설전류는 2order 이상 낮았으며, 이는 CoSi2Si의 계면이 균일하였기 때문이다.
Nd치환이 Ag의 용융점 이하인 940˚C에서 소결한 Bi1-xNdxNbO4세라믹스의 소결거동과 마이크로파 유전특성에 미치는 영향을 연구하였다. Nd치환량(x)이 증가함에 따라 사방점에서 삼사정으로 변하는 양이 증가하였고 결정립의 크기, 겉보기밀도, 유전상수는 감소하였다. Qxf0값은 Nd 치환량이 0.025mole 이하의 경우 큰 변화가 없으나, 그 이상에서는 증가하여 0.1mol일 때 최고값을 보이고 다시 급격히 감소하였다. TCF값은 Nd치환량이 증가할수록(+)방향으로 증가하였다. 가장 우수한 마이크로파 유전특성은 Nd 치환량이 0.025mole일 때 얻어졌으며, 이때 유전상수는 43.7, Qxf/ sub 0/값은 11,046GHz, TCF값은 -1.82ppm/˚C이었다.
CuO의 첨가가 BiNbO4 세라믹스의 마이크로파 유전특성과 소결거동에 미치는 영향에 대하여 연구하였다. CuO의 첨가량이 증가함에 따라 액상의 생성에 의해 소결성이 증가하여 시편의 밀도는 증가하며 유전상수는 소결온도가 증가함에 따라 증가하는 경향을 보였다. Qxfo값은 CuO 첨가량이 0.065wt%이고 소결온도가 940˚C일 때 최대값을 나타내며 그 이상 CuO 첨가량을 증가하였다. 소결온도 920˚C-960˚C, 소결시간 2시간일 때의 고주파 유전특성으로는 유전상수가 43.6, Qxfo값이 13,200 이상, τf =-14.36ppm/˚C을 얻었다.
(Pb0.63Ca0.37)ZrO3 세라믹에 MgO와 SrO를 첨가하여 Ca를 Mg와 Sr 이온으로 치환하였을 때의 고주파 유전특성에 대해 연구하였다. Ca 이온의 일부를 Mg 이온으로 치환시킨 경우에는 A-O결합에 의한 분극의 증가로 인하여 유전상수는 직선적으로 증가하지만 품질계수는 감소한다. 또한 Ca 이온을 Sr 이온으로 치환시킨 경우에는 결합길이의 증가로 인해 분극이 감소되어 유전상수와 품질계수가 감소한다. 고주파용 유전재료의 설계에 있어서 관용인자와 이온결합성의 평가가 중요하다.