Due to the evolution of war fields to the net-centric one, weapon systems have become very complex in terms of both mission capability and implementation scales. In particular, the net-centric war field is characterized by a set of interconnected and independently operable weapon systems. As such, the individual weapon systems are required to meet the interoperability and thus, assuring it has been becoming more crucial even in the early stage of development. Furthermore, the ever-growing complexity of the weapon systems has attracted a great deal of attention on the safety issues in the operation and development of weapon systems. The objective of the study is on how to assure the interoperability for safety-critical weapon systems while maintaining system complexity. To do so, the approach taken in the paper is to consider the interoperability from the early stage of the development. Specifically, the required functions to satisfy the interoperability are developed first. The functions are then analyzed in order to link the safety requirements to the reliability evaluation, which results in the study of quantifying the effects of the safety requirements on the system as a whole. As a result, we have developed a methodology and procedure on how to assure interoperability while applying the safety requirements in the weapon systems development.
The recent trend in the war fields on the globe may be characterized by the network-centric warfare, which would, in turn, make the concept of weapon systems be changed. To this end, the concept of system of systems (SoS) has been introduced in literature. An SoS is a collection of multiple systems, each of which is an independent system and can be interoperable with each other. Thus, in defense domain each SoS is a big weapon system as a whole operated in actual environment and each element of it is also an independent smaller weapon system, but they should be interoperable via network among each other. The safety results studied for each elementary system alone may not be fully applicable to the whole SoS. As such, the objective of this paper is to study how to make the SoS safety requirements be distributed down over the interoperable elementary systems. Since handling the interoperability requires a technique of systems architecture, a standard method called the DoD Architectural Framework (DoDAF) has been used here to derive a solution. Using DoDAF, the safety requirements were first analyzed in the operability environment. The results were then studied to be included in an integrated model of both the systems design and safety processes. A further study of present paper would facilitate ensuring safety in the development of SoS weapon systems in practice.
The objective of this research is to examine how the lateral resisting system of selected prototypes are affected by seismic zone effect and shape irregularity on its seismic performance. The lateral resisting systems are divided into the three types, diagrid, braced tube, and outrigger system. The prototype models were assumed to be located in LA, a high-seismicity region, and in Boston, a low-seismicity region. The shape irregularity was classified with rotated angle of plane, 0°, 1°, 2°. This study performed two parts of analyses, Linear Response and Non-Linear Response History(NLRH) analysis. The Linear Response analysis was used to check the displacement at the top and natural period of models. NLRH analysis was conducted to invest base shear and story drift ratio of buildings. As results, the displacement of roof and natural period of three structural systems increase as the building stiffness reduces due to the changes in rotation angle of the plane. Also, the base shear is diminished by the same reason. The result of NLRH, the story drift ratio, that was subject to Maximum Considered Earthquake(MCE) satisfied 0.045, a recommended limit according to Tall Building Initiative(TBI).
Recently, we have witnessed the definitely negative impacts of large-scale accidents happened in such areas as atomic power plants and high-speed train systems, which result in increased fear for the potential danger. The problems appear to arise due to the deficiency in the design of large-scale complex systems. One of the causes can be attributed to the design process that does not fully reflect the safety requirements in the early stage of the system development because of the substantially increased complexity. In this paper, to enhance the systems safety an integrated process is studied, which considers simultaneously both the system design process and system safety process from the beginning of the system development. In the conceptual system design phase an integrated process model is constructed by analyzing the activities of both the system design and safety processes. As a case study example, an inner city train system is described with the application of the developed process. The computer simulation of the example case is followed by the result discussed. The results obtained in the paper are expected to be the basis for the future study where a detailed process and its associated activities can be developed.
This research made an actual study of the Internal Control Systems on medium and small business company located on Gumi industry area. From this study, we learned that work scope, approval procedure and proof documents are well prepared, but some problem
The Systems Engineering, as a methodology for engineering and management of today's ever-growing complex system, is a comprehensive and iterative problem-solving process. The process centers on the analysis and management of the stakeholders' needs throug
This paper deals with a first-come, first-served qucueing model to analyze the behavior of heterogeneous finite source system with a single server. Each sources and the processor are assumed to operate in independently Markovian environments, respectively
This study is concerned with developing a hybrid heuristic algorithm for solving the redundancy optimization problem which is very important in system safety, This study develops a HH(Hybrid Heuristic) method combined with two strategies to alleviate the risks of being trapped at a local optimum. One of them is to construct the populations of the initial solutions randomly. The other is the additional search with SA(Simulated Annealing) method in final step. Computational results indicate that HH performs consistently better than the KY method proposed in Kim[8]. Therefore, the proposed HH is believed to an attractive to other heuristic methods.
This paper deals with the evaluation problem of complex systems by introducing a fuzzy approach. The authors are functionally supposing a hierarchical structure model of a complex system and give light on the following problems. First for the purpose of clarifying the characteristics of measures the property and differences between two method such as linear and fuzzy viewpoint are discussed through two level-down evaluation process. Second the integrated evaluation process which keeps reversibility between hierarchical levels is discussed and obtained some necessary conditions for reversibility of fuzzy evaluation. From these results it is expected that the fuzzy approach overcomes partly the limitation of reductionism at the hierarchical evaluation of complex systems.