알로에의 최소공정개발 연구의 일환으로 DIS(dewatering & impregnation soaking) 공정에 미치는 온도의 효과를 조사하였다. 삼투탈수는 분자량 4000의 PEG을 삼투제로 하여 이의 40%(w/v) 용액에 두께 0.5 cm의 알로에 잎 슬라이스를 넣고 간헐적으로 교반하면서 2시간 동안 수행하였다. 서로 다른 침지온도(25-55oC)가 DIS의 성능(수분소실 및 고형분 획득)에 미치는 영향을 현미경관찰에 의한 세포조직 구조의 경시변화를 모니터링하면서 조사, 비교되었고, 동역학적으로 분석하였다. 고온(55oC) 처리에서는 저온(25 and 35oC)에서보다 더 높은 수분소실을 보였으나 세포조직의 파괴를 동반하였다. 또, 품질지표값으로서의 glucomannan 함량은 세포조직구조를 잘 유지하였던 침지온도 35oC에서 얻어졌다. 얻어진 시료의 실온건조제품을 재수화시켜 조사하고 동역학적으로 해석한 결과, 재수화 동역학은 Peleg 및 Weibull 모델로 잘 설명할 수 있었다. DIS 제품은 DIS 처리하지 않은 제품에 비해 세포구조 및 재수화성질의 향상을 주어 적정온도하에서 DIS 처리함으로써 최소공정의 알로에 제품을 얻을 수 있음을 확인하였다.
The optimization of dewatering and impregnation soaking (DIS) process for a concentrated Aloe vera product was investigated using Taguchi method in combination with desirability function analysis. Polyethylene glycol (PEG) as osmotic agent was adopted, and soaking temperature (T), immersion time (t), PEG concentration (C), PEG molecular weight (MW), and thickness of Aloe vera leaf slice (x) were selected as affecting variables. L16 (45) orthogonal array was designed by Taguchi method with four parameters such as water loss, solid gain, glucomannan, and anthraquinone contents as objective functions. An overall quality index was transformed from individual objective functions, and was optimized finally. The optimal setting for maximum overall desirability was obtained at 55oC (T), 2 hr (t), 40% w/v (C), 0.5 cm (x), and 4,000 Da. (MW). The obtained overall desirability was 0.7842. The order of affecting factors was T>C>x>MW≈x>t and the experimental results under optimum condition were similar to the prediction of an overall desirability of 0.8384. Also, it was found that the optimized DIS condition could be reproduced for a minimally processed Aloe vera product with high quality.
In vitro physiological functions such as jack bean (Canavalia ensiformis) urease inhibitory activity and retarding effect of glucose/bile acid of Aloe vera gel concentrated by the optimized DIS (Dewatering Impregnation & Soaking) process conditions were examined. Urease inhibitory activity of DIS aloes ranged from 84.6 to 94.4%, which was similar to or higher than 86.3% of fresh aloe. Also, urease inhibitory activity of DIS aloes was maintained at initial levels after heat treatment (90oC, 10 min.) and drying treatment (freeze or hot air drying). Urease inhibition pattern from Lineweaver-Burk plot indicated general non-competitive inhibition, and inhibition constants (KIE and KIES) of DIS aloes were 41-149 and 87-163 μL/mL, respectively. DIS(glucose) and DIS (polyethylene glycol) exhibited the highest retarding effect of glucose and bile acid. Their retarding effects were about 1.6 and 1.8 folds higher than that of fresh aloe after 0.5 and 1 hr of the dialysis, respectively. Conclusively, the above in vitro physiological functions of Aloe vera gel concentrated by DIS process suggested that aloe products treated with DIS would have the potential benefits for protection against Helicobacter pylori and reduction of blood glucose and cholesterol levels.
The structural and physicochemical properties of dried aloe vera gel by DIS (dewatering impregnation soaking) process under optimum conditions were investigated. FT-IR spectra for dried samples of DIS aloes showed the typical patterns of standard aloe polysaccharide, and surface structures by SEM (scanning electron microscopy) were similar to a gel-like structure. In case of physicochemical properties of dried aloe samples by DIS process, solubilities and swelling powers of control (not osmotic treated aloe), DIS (S) and DIS (G), samples treated by osmotic solution of 60% sucrose/0.25% NaCl and 50% glucose/0.5% NaCl, were 48.3-57.3% and 8.3-11.7%, respectively, showing no significant differences among samples, but swelling power of DIS (PEG), sample treated by using 50% polyethylene glycol as an osmotic agent was about 5 times higher that of control. Also, water holding capacities of control, DIS (S) and DIS (G) were similar to each other, but that of DIS (PEG) was about 5 times higher that of control. Oil holding capacities of control and DIS aloes maintained the 50.9-86.4% levels of water holding capacities showing no significant differences among samples. Rehydration ratio of DIS (PEG) aloes were significantly dependent on the temperature of rehydrated solvent (water), and rehydration ratio of not-fileted aloe was about two folds higher than that of fileted aloe.