검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 193

        8.
        2024.04 구독 인증기관·개인회원 무료
        Bee traffic at the hive entrance can be used as an important indicator of foraging activity. We investigated patterns of honeybees and bumblebees near their hives as a basis for calculating bee traffic using the image deep learning. The flight pattern near the hive differed significantly according to bee at entering and leaving the hive. Honeybees mainly showed flight that changed flight direction more than once (69.5%), whereas bumblebees mainly performed straight flight (48.7%) or had a single turn (36.5%) in flight. When bees entered the hive, honeybees primarily showed one-turn or two-turn flight patterns(88.5%), and bumblebees showed a one-turn flight pattern (48.0%). In contrast, when leaving the hive, honeybees primarily showed a straight flight pattern (63.0%), and bumblebees primarily showed a straight or one-turn pattern (90.5%). There was a significant difference in flight speed according to the flight pattern. The speed of straight flight (0.89±0.47 m/s) was 1.5 to 2.1 times faster than flight where direction changed. Therefore, our results can help determine the capturing and recognizing the flying image of bees when calculating bee traffic by image deep learning.
        9.
        2024.04 구독 인증기관·개인회원 무료
        In agricultural ecosystems, the relationship between insect pests and hosts is important, as insect pests can invade hosts, increasing insect pest density that threatens the hosts’ health. Insect pests and hosts are negatively correlated and affect the environment around them. i.e., host health, environment, and insect pest density are causally related, and the environment affects insect pest density. Deep learning is method of machine learning based on neural network theory. This approach enables handling uncertain environmental factors that simultaneously impact the density of F. occidentalis. Environmental factors affecting the density fluctuation of F. occidentalis selected atmosphere factors, soil factors, and host factors. This study aims to F. occidentalis monitoring using deep learning models inputting environmental factors.
        10.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.
        4,200원
        11.
        2024.03 구독 인증기관·개인회원 무료
        도로의 포장 상태의 노후화나 관리미흡으로 인하여 시민의 사유 재산 중 주요한 요소인 자동차 등의 손상이나 자동차 사고 로 이어질 수 있어 큰 사회적 비용이 발생할 뿐 아니라, 시민들의 불편과 불만을 초래할 수 있다. 최근 도로 포장의 경우 포트홀 발생 건수와 그에 따른 민원 및 소송 건수가 증가해 행정력 및 예산이 낭비되고 있으며, 서울시의 경우 포장도로 노후화 추이가 증가함에 따라 유 지 관리 비용 또한 증가하고 있다. SOC 시설물 안전성 강화에 대한 사회적 요구는 지속적으로 증가하고 있어 한정된 예산의 효율적 활용을 위한 첨단 유지관리기술 도입이 시급하다.
        12.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study develops a model that can estimate travel speed of each movement flow using deep-learning-based probe vehicles at urban intersections. METHODS : Current technologies cannot determine average travel speeds for all vehicles passing through a specific real-world area under obseravation. A virtual simulation environment was established to collect information on all vehicles. A model estimate turning speeds was developed by deep learning using probe vehicles sampled during information processing time. The speed estimation model was divided into straight and left-turn models, developed as fully-offset, non-offset, and integrated models. RESULTS : For fully-offset models, speed estimation for both straight and left-turn models achieved MAPE within 10%. For non-offset models, straight models using data drawn from four or more probe vehicles achieved a MAPE of less than 15%. The MAPE for left turns was approximately 20%. CONCLUSIONS : Using probe-vehicle data(PVD), a deep learning model was developed to estimate speeds each movement flow. This, confirmed the viability of real-time signal control information processing using a small number of probe vehicles.
        4,000원
        13.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the recent surge in YouTube usage, there has been a proliferation of user-generated videos where individuals evaluate cosmetics. Consequently, many companies are increasingly utilizing evaluation videos for their product marketing and market research. However, a notable drawback is the manual classification of these product review videos incurring significant costs and time. Therefore, this paper proposes a deep learning-based cosmetics search algorithm to automate this task. The algorithm consists of two networks: One for detecting candidates in images using shape features such as circles, rectangles, etc and Another for filtering and categorizing these candidates. The reason for choosing a Two-Stage architecture over One-Stage is that, in videos containing background scenes, it is more robust to first detect cosmetic candidates before classifying them as specific objects. Although Two-Stage structures are generally known to outperform One-Stage structures in terms of model architecture, this study opts for Two-Stage to address issues related to the acquisition of training and validation data that arise when using One-Stage. Acquiring data for the algorithm that detects cosmetic candidates based on shape and the algorithm that classifies candidates into specific objects is cost-effective, ensuring the overall robustness of the algorithm.
        4,000원
        14.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인공 고관절 치환술에 사용되는 금속 삽입물은 크기와 성분에 따라 주변 조직과 크고 작은 자화율의 차이를 일으켜 다양한 금속 인공물의 원인이 되며, 영상에 진단적 가치를 떨어뜨린다. 수신대역폭을 높이는 것은 인공물 감소에 효과가 있으나, 높은 수신대역폭은 획득 영상의 신호대잡음비를 감소시키는 단점이 있어 일정 수치 이상으로는 적용 하기에는 어려움이 있다. 딥러닝 알고리즘은 영상의 신호대잡음비를 높이고 전체 영상에서 균일하게 배경 잡음을 제거하는 데 매우 효과적이다. 이에 본 연구에서는 금속 인공물 감소를 위해 기존에 높은 수신대역폭을 이용하는 MARS(metal artifact reduction sequence) 프로토콜과 더욱 높은 수신대역폭을 설정한 프로토콜(Ultra MARS) 을 획득한 후 딥러닝을 이용하여 딥러닝 Ultra MARS로 변환한 후에 금속 인공물의 차이를 비교하였다. 딥러닝 적 용 후 Ultra MARS에서 적용 전 또는 기존의 MARS 기법보다 인공물의 크기가 작게 측정이 되었다. 또한, 인공물의 전체적인 SSIM(structural similarity index measure)에서도 기존의 MARS 기법보다 전체면적이 작게 측정되었 다. 더 나아가 SSIM의 결과 딥러닝 적용 전후의 구조적 유사성 역시 유사하게 나왔다. 딥러닝 알고리즘을 기존에 인공물을 줄이기 위해 사용하는 MARS와 같은 기법에서도 월등하게 높은 수치를 사용하는 강조영상을 획득 가능하 며 영상의 인공물도 줄이며, 영상의 대조도 또한 유지되는 영상을 제공할 수 있을 것으로 사료된다.
        4,000원
        20.
        2023.11 구독 인증기관·개인회원 무료
        This study aims to classify R&D activities related to the nuclear fuel cycle using the deep learning methodology. First, R&D data of the Republic of Korea were collected from the National Science & Technology Information Service (NTIS) for the years 2021, 2022, and 2023. We use keywords such as ‘nuclear,’ ‘uranium,’ ‘plutonium,’ and ‘thorium’ to find nuclear-related R&D projects in the NTIS database. Among the numerous R&D projects found through keyword searches, overlapping and medical-related R&D projects were excluded. Finally, 495 R&D projects conducted in 2021, 430 R&D projects conducted in 2022, and 296 R&D projects conducted in 2023 were obtained for analysis. After that, Safeguards experts determine whether the R&D projects are subject to declaration under the AP. The values of the content validity index (CVI) and content validity ratio (CVR) were used to verify whether the experts’ judgments were valid. The 1,218 collected and labeled data were then divided 8:2 into training and test datasets to see if deep learning could be applied to classify nuclear fuel cycle-related R&D activities. We use the Python and TensorFlow packages, including RNN, GRU, and CNN methods. First, the collected text information was preprocessed to remove punctuation marks and then tokenized to make it suitable for deep learning. After 20 epochs of training to classify the nuclear fuel cycle-related R&D activities, the RNN model achieved 97.30% accuracy and a 5.85% error rate on the validation dataset. The GRU model achieved 96.53% accuracy and a 9.06% error rate on the validation dataset. In comparison, the CNN model achieved 94.61% accuracy and a 2.57% error rate on the validation dataset. When applying the test dataset to each model, the RNN model had a test accuracy of 83.20%, the GRU test accuracy of 82.79%, and the CNN model had a test accuracy of 85.66% for the same dataset. This study applied deep learning models to labeled data judged by various experts, and the CNN model showed the best results. In the future, this study will continue to develop an optimum deep learning model that can classify nuclear fuel cycle-related R&D activities to achieve the purpose of safeguards measures from open-source data such as papers and articles.
        1 2 3 4 5