검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 208

        1.
        2024.10 구독 인증기관·개인회원 무료
        Block pavements are widely used in various infrastructures, offering durability and aesthetic appeal. However, assessing their condition through manual methods is resource-intensive and subjective. This study proposes a deep learning approach using the Hybrid TransUNet model to enhance the accuracy and efficiency of detecting block pavement distresses. A dataset of over 10,000 images was used to train and test binary and multiclass segmentation models, significantly improving detection accuracy. The results show that the Hybrid TransUNet model outperforms other models, though challenges in detecting certain distress types like cracks persist.
        2.
        2024.10 구독 인증기관·개인회원 무료
        병충해의 조기 발견과 그에 따른 조치의 중요성은 농업 및 생태계 보전에 있어서 핵심적이다. 그러나 초기에는 일반적인 카메라나 센서로는 변화의 정도를 관측하기 어렵다. 이러한 한계를 극복하기 위해 초분광 모듈을 활용하여 파장대별 식 물 데이터를 관측함으로써, 딥러닝 모델을 통해 가로수 식생의 건강 상태를 판별, 병충해 여부를 초기에 확인 가능하다. 이를 통해 조기에 병충해에 대해 조치함으로써 더 큰 피해를 방지할 수 있다. 이러한 접근 방식은 농업 및 생태학 분야 에서 식물의 건강을 모니터링하고 보전하는 데 적극적으로 연구되고 있다.
        3.
        2024.10 구독 인증기관·개인회원 무료
        국내 콘크리트 구조물의 노후화가 진행됨에 따라 안전관리를 위한 효과적인 보수 및 보강이 요구되고 있다. 특히, 교량 바닥판은 교통하중과 염화물 침투 등 다양한 유해환경에 직접 노출되어 지속적인 열화가 발생하고 있다. 국내외에서는 교량 바닥판 유지보수 의사결정을 위해 비파괴 조사 방법 중 하나인 지표투과레이더(Ground Penetrating Radar, GPR) 탐사가 주로 활용되고 있다. 차량형 다채널 GPR 장비를 통해 취득된 방대한 양의 탐사자료는 해석하는 데 많은 시간이 소요되며 분석가의 주관이나 숙련도에 따라 해석결과가 달라질 수 있다. 이러한 문제를 해결하기 위해 최근에는 딥러닝 (Deep Learning) 기반의 GPR 자료해석 기법들이 제안되고 있다. 본 연구에서는 교량 바닥판 상태 평가 작업 효율 향상 을 위해 딥러닝 기반 GPR 자료해석 기법을 적용하였다. 현장자료 예제로는 영동대교 정밀안전진단 과업에서 교량 바닥 판 상태조사를 위해 취득한 GPR 자료를 사용하였으며 딥러닝 기법 적용 결과를 분석가의 해석결과와 비교하여 예측 성 능을 평가하였다.
        4.
        2024.10 구독 인증기관·개인회원 무료
        Evaluating the performance of asphalt concrete using CT scanning has become an essential area of research due to its potential to revolutionize the way we assess road materials. Traditional methods often require destructive sampling, which can damage infrastructure and offer limited insight into the material's internal structure. In contrast, CT scanning provides a non-destructive, highly detailed analysis of asphalt's internal features, such as air voids, aggregate distribution, and binder coverage, all of which are critical to its durability and performance. Additionally, the ability to create 3D models from CT scans allows for deeper insights into factors like void connectivity and aggregate bonding, which directly affect the lifespan of pavements. By combining CT imaging with advanced data processing techniques, such as deep learning, this research offers more accurate and reliable methods for optimizing asphalt mix designs, ultimately leading to longer-lasting roads, reduced maintenance costs, and more sustainable construction practices.
        6.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 딥러닝은 자기공명영상 검사에서의 화질 개선을 위해 다양하게 활용되고 있다. 하지만 다양한 자기공명영상 검사에서 딥러닝이 적용된 기법과 상황에 대한 평가는 부족한 편이다. 이에 본 연구에서는 모션 ACR(American College of Radiology) 팬텀을 활용하여 일반적인 상황과 움직이는 상황에서 T2-PROPELLER(periodically, rotated overlapping parallel lines with enhanced reconstruction, PROPELLER)와 T2-FSE(fast spin echo, FSE) 기법의 화질을 비교 평가해 보고자 하였다. 연구 결과 움직이지 않는 상황에서의 딥러닝 프로세스를 적용하였을 때 유의미한 신호대잡음비와 대조대잡음비의 상승을 보였다. 하지만 팬텀에 움직임을 주는 동적인 상황 에서 딥러닝 프로세스를 적용하였을 때 유의미한 화질 개선을 보이지 않았다. 이러한 결과는 딥러닝 프로세스를 절대 적으로 사용하기보다 다양한 상황에 맞게 선택적으로 적용하는 것이 필요할 것으로 사료된다.
        4,000원
        7.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 호흡동조화기법의 대안으로 딥러닝 자유호흡기법에서 b-value 별 겉보기확산계수 값을 평가하고 확 산강조영상과 겉보기확산계수 지도의 해부학적 일치성을 분석하여 적절한 여기횟수 값을 알아보고자 하였다. 연구 방법은 2023년 7월부터 2024년 1월까지 간 자기공명영상 검사가 의뢰된 성인 남녀 35명을 대상으로 하였고 사용 장비는 Magnetom Skyra 3.0T(Siemens, Germany)를 이용하였다. 자유호흡기법의 비교를 위해 b-value 50, 400, 800(s/mm2)의 여기횟수를 각각 딥러닝 호흡동조화기법에서 2,3,4으로 딥러닝을 이용하지 않은 일반 자유호 흡기법에서 4,6,8으로 검사하였다. 딥러닝을 추가한 일반 자유호흡기법에서는 1,2,3 여기횟수, 2,3,4 여기횟수, 3,5,6 여기횟수, 4,6,8 여기횟수로 변화하였다. 연구 결과 딥러닝 자유호흡기법에서 간의 좌엽과 우엽, 담낭의 평균 겉보기확산계수 값은 딥러닝 호흡동조화기법과 비교하여 모두 통계적 유의성을 확인하였다. 한편 정성적 평가의 해 부학적 일치성을 분석한 결과 딥러닝 자유호흡기법의 3,5,6 여기횟수와 4,6,8 여기횟수에서 가장 높은 점수를 얻었 으며 검사 시간에서는 딥러닝 호흡동조화기법과 비교하여 약 51%, 40% 감소하였다. 따라서 간 진단에 있어 딥러닝 자유호흡기법에서 b-value 별 적절한 여기횟수 값을 이용한다면 겉보기확산계수 지도의 정확도 유지와 함께 검사 시간을 감소시킬 수 있어 임상적으로 유용한 검사가 될 것으로 사료된다.
        4,000원
        8.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, SDAS(Advanced driver-assistance system) are being installed to assist driving of vehicles and improve driver convenience. LDWS(Lane departure warning system) and FCWS(Forward collision warning system) are the core of the technology. Among these, FCWS is evaluated as a key assistive technology to prevent vehicle crashes. Accordingly, many algorithms are being developed and tested to improve detection speed and actual detection algorithms are being commercialized. In this paper, We propose the design of a system that optimizes FCWS speed by considering the AI performance of the terminal device when implemented as an embedded system.
        4,000원
        9.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.
        4,000원
        10.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder’s status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
        4,200원
        11.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        흉골 자기공명영상 검사 시 호흡 등 환자 움직임에 의한 인공물 발생을 최소화하는 것은 어렵다. 하지만 자기공명영 상 검사는 타 영상 검사와 비교해 흉골 병변을 발견하는 데 있어 진단적 가치가 높은 장점이 있다. 따라서 본 연구에 서는 환자의 검사 자세 및 딥러닝 기법을 통해 최적의 검사 방법을 도출하고자 한다. 자세 별 영상 변화를 확인하기 위해 바로 누운 자세, 엎드린 자세, 유방 코일을 사용한 엎드린 자세로 진행하였으며, 고식적 기법의 영상과 Deep Resolve Boost(DRB) 기법을 적용한 영상을 비교 관찰하였다. 모든 대상에게 같은 조건으로 각 영상을 2회씩 획득 한 후 전반적인 영상 품질을 기준으로 정성적으로 평가하였고, DRB의 적용 여부에 따른 신호 대 잡음비의 변화 정도를 정량적으로 평가하여 개선 정도를 산출하였다. 정성적 평가에서 DRB 적용 여부와 무관하게 엎드린 자세, 유방 코일을 사용한 엎드린 자세, 바로 누운 자세 순으로 높은 점수를 얻었으며, DRB를 적용한 영상이 고식적 기법 의 영상보다 높은 점수를 얻었다. 또한 정량적 평가를 통해 유방 코일을 사용한 엎드린 자세, 엎드린 자세, 바로 누운 자세 순으로 높은 개선 정도를 확인하였다. 본 연구를 통해 흉골 검사 시 DRB 기법을 적용하는 것은 영상의 질을 높이는 방법임을 확인하였다. DRB를 적용하지 못하는 환경에서는 될 수 있으면 엎드린 자세를 적용하는 것을 권고하며, DRB를 적용할 수 있는 환경에서는 환자 측 인자를 고려하여 엎드린 자세와 유방 코일을 사용한 엎드린 자세를 모두 적용할 수 있다.
        4,000원
        1 2 3 4 5