검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2023.11 구독 인증기관·개인회원 무료
        Structural stability of a waste form can be provided by the waste form itself (steel components, etc.), by processing the waste to a stable form (solidification, etc.), or by emplacing the waste in a container or structure that provides stability (HICs or engineered structure, etc.). The waste or container should be resistant to degradation caused by radiation effects. In accordance with the requirements for the domestic waste acceptance criteria, irradiation testing of solidified waste forms containing spent resin should be conducted on specimens exposed to a dose of 1.0E+6 Gy and other material 1.0E+7 Gy. Expected cumulative dose over 300 years is about 1.770E+6 Gy for spent resin and 0.770E+6 Gy for dried concentrated waste generated from NPPs generally. According to NRC Waste Form Technical Position, to ensure that spent resins will not undergo adverse degradation effects from radiation, resins should not be generated having loadings that will produce greater than 1E+6 Gy total accumulated dose. If it necessary to load resins higher than 1E+6 Gy, it should be demonstrated that the resin will not undergo radiation degradation at the proposed higher loading. This is the recommended maximum activity level for organic resins based on evidence that while a measurable amount of damage to the resin will occur at 1E+6 Gy, the amount of damage will have negligible effect on disposal site safety. Cementitious materials are not affected by gamma radiation to in excess of 1E+6 Gy. Therefore, for cement-stabilized waste forms, irradiation qualification testing need not be conducted unless the waste forms contain spent resins or other organic media or the expected cumulative dose on waste forms containing other materials is greater than 1E+7 Gy. Testing should be performed on specimens exposed to IE+6 Gy or the expected maximum dose greater than 1E+6 Gy for waste forms that contain ion exchange resins or other organic media or the expected maximum dose greater than 1E+7 Gy for other waste forms. This is suggestion as a review result that requirement for irradiation testing of solidified waste forms has something to be revise in detail and definitively.
        2.
        2023.05 구독 인증기관·개인회원 무료
        The acceptance criteria for low and intermediate level radioactive waste disposal facilities in Korea to regulate that homogeneous waste, such as concentrated waste and spent resin, should be solidified. In addition, solidification requirements such as compressive strength and leaching test must be satisfied for the solidified radioactive waste solidified sample. It is necessary to develop technologies such as the development of a solidification process for radioactive waste to be solidified and the characteristics of a solidification support. Radioactive waste solidification methods include cement solidification, geopolymer solidification, and vitrification. In general, low-temperature solidification methods such as cement solidification and geopolymer solidification have the advantage of being inexpensive and having simple process equipment. As a high-temperature solidification method, there is typically a vitrification. Glass solidification is generally widely used as a stabilization method for liquid high-level waste, and when applied to low- and intermediate-level radioactive waste, the volume reduction effect due to melting of combustible waste can be obtained. In this study, the advantages and disadvantages of the solidification process technology for radioactive waste and the criteria for accepting the solidified material from domestic and foreign disposal facilities were analyzed.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Domestic NPPs had produced the paraffin-solidifying concentrate waste (PSCW) for nearly 20 years. At that time radioactive waste management policy of KHNP was to reduce the volume and to store safely in site. The PSCW has been identified not to meet the leaching index after introducing the treatment system. PSCW has to be treated to meet current waste acceptance criteria (WAC) for permanent disposal. PSCW consists of dried concentrate 75% and paraffin 25% of volume. When PSCW is separated into a dried concentrate and a paraffin by solubility, total volume separated is increased twice. Final disposal volume of dried concentrate can reach to several times when solidifying by cement even considering exemption. Application of polymer solidification technology is difficult because dried concentrate is hard to make form to pellet. When PSCW is packaged in High Integrity Container (HIC), volume of PSCW is equal to the volume before package. The packaging process of HIC is simple and is no necessary of large equipment. It is important to recognize that HIC was developed to replace solidification of waste. HIC has as design goal a minimum lifetime of 300 years under disposal environment. The HIC is designed to maintain its structural integrity over this period, to consider the corrosive and chemical effects of both the waste contents and the disposal environment, to have sufficient mechanical strength to withstand loads on the container and to be capable of meeting the requirements for a Type A transport Package. The Final waste form is required for facilitating handling and providing protection of personnel in relation to solidification, explosive decomposition, toxic gases, hazardous material, etc. Structural stability of final waste form is required also. Structural stability of the waste can be provided by the waste itself, solidifying or placing in HIC. Final waste form ensure that the waste does not structurally degrade and affect overall stability of the disposal site. The HIC package contained PSCW was reviewed from several points of view such as physicochemical, radiological and structural safety according to domestic WAC. The result of reviewing shows that it has not found any violation of WCP established for silo type disposal facility in Gyeongju city.
        4.
        2022.05 구독 인증기관·개인회원 무료
        In Malaysia, there are several industries processing mineral ores generate residues containing naturally occurring radioactive material (NORM) with activity concentrations above the control limits established by the Malaysian Atomic Energy Licensing Board (AELB). These industries use mineral ores or concentrated ores as their feed materials to produce or extract valuable sand minerals or rare earth compounds for use in another industries. The control limits for activity concentrations of Uranium-238 (U-238) and Thorium-232 (Th-232) and their decay series is 1.0 Becquerel per gram (Bq·g−1) while activity concentration of Potassium 40 (K-40) is 10.0 Bq·g−1. The management of residue containing NORM radioactivity above the control limits must be done in accordance with current rules and regulations including proper handling, storage, transportation and/or disposal. Where possible, appropriate mixture process with other non-radiological material would reduce the activity concentrations to below the control limits. Depending on specific characteristics of residue, appropriate approach to reuse or recycle should be encouraged as part of special waste management. For this case, an exemption to release it from radiological controls can be applied but require scrutiny review and approval process by AELB. In addition, the health and safety aspects and environmental issues should be assessed which to be done in accordance with the relevant rules and regulations. As a last resort, a disposal of residue containing NORM radioactivity shall be done at the landfill disposal facility approved by AELB and other relevant Authorities.
        7.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내 3단계 매립형 처분시설은 2018년도 한국원자력환경공단의 중^저준위 방폐물관리시행계획에 의하면 주로 원전 해체 현장에서 발생하는 극저준위방폐물을 수용하기 위해 2019년 4월부터 2026년 2월까지 총 104,000드럼(2개 트렌치)을 수용 하기 위해 건설이 계획 중이다(총 2,246억원 투입). 이후 총 5개 트렌치에 260,000드럼이 총 34,076 m2의 면적에 단계적으로 수용되며 따라서 현재 한국원자력환경공단은 관련 인수기준을 마련 중에 있다. 극저준위방폐물 처분시설 인수기준의 경우 프랑스, 스페인 등이 전용 처분시설을 운영하면서 자국의 인수기준을 합리적으로 잘 준용하고 있으나 본 논문에서는 해체방 폐물의 처분에 가장 경험이 많은 미국의 처분시설을 고려하여 국내 매립형 처분시설에 우선적으로 반영되어야 할 사항이 있는지 분석하였고 이를 통하여 경주내 3단계 매립형 처분시설의 인수기준 마련에 도움이 되고자 하였다.
        4,300원
        9.
        2015.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Since the commercial operation of Kori Unit #1 nuclear power plant(NPP) started in 1978, 23 units at present are operating in Korea. Radioactive wastes will be steadily generated from these units and accumulated. In addition, the life-extension of NPPs, construction of new NPPs and decontamination and decommissioning research facilities will cause radioactive wastes to increase. Recently, Korea has revised the new classification criteria as was proposed by IAEA. According to the revised classification criteria, low-level, very-low-level and exempt waste are estimated to about 98% of total disposal amount. In this paper, current status of overseas cases and disposal method with new classification criteria are analyzed to propose the most reasonable method for estimating the amount of decommissioning waste when applying the new criteria.
        4,000원
        10.
        2014.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원자력발전을 지속가능한 에너지원으로 활용하기 위해서는 원전 해체 및 운영 과정에서 발생하는 방사성폐기물의 안전하고 효율적인 처분이 매우 중요하다. 방사성폐기물 종류는 다양하지만 해체과정에서 가장 많이 발생할 것으로 예상되는 극저준 위방사성폐기물 인수기준수립은 원전해체전략수립에 큰 영향을 줄 것으로 보인다. 본 연구에서는 영국과 미국의 극저준위 방사성폐기물처분장 인수기준을 경주에 건설 중인 원자력환경센터의 인수기준과 비교분석을 통해 향후 우리나라 극저준위 방사성폐기물 처분을 위한 폐기물 인수기준을 분석하고자 한다.
        4,000원
        12.
        2007.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 고준위폐기물 처분용기를 지하 심지층에 처분하기 위하여 요구되는 구조설계 요구조건과 구조안전성 평가 기준을 도출하였다. 고준위폐기물은 높은 열과 많은 방사능을 방출하기 때문에 고준위폐기물을 넣어 보관하는 처분용기는 그 취급에 많은 주의가 요구된다. 이를 위하여 고준위폐기물 처분용기는 장기간(보통 10,000년 동안) 안전한 장소에 보관되어야 한다. 보통 이 보관 장소는 지하 500m에 위치한다. 지하 깊은 화강암에 고준위폐기물을 보관하도록 설계되는 처분용기는 내부주철삽입물과 이를 감싸고 있는 부식에 강한 와곽쉘, 위 덮개와 아래 덮개로 구성되는 구조로 되어 있으며 지하수압과 벤토나이트 버퍼의 팽윤압을 받는다. 따라서 고준위폐기물 처분용기는 심지층에 보관 시 이들 외력들을 견디도록 설계되어야 한다. 만약에 발생 가능한 모든 하중조합을 고려한 처분용기 설계가 되지 않으면 심지층에 위험한 고준위폐기물 처분 시에 처분용기에 소성변형이나 크랙 또 좌굴같은 구조적 결함이 발생할 수 있다. 따라서 심지층에 처분용기를 처분 시에 처분용기에 발생하는 구조적 문제들이 발생하지 않게 하기 위하여 여러 가지 구조해석이 수행되어야 한다. 이러한 구조해석 수행에 앞서 처분용기 설계 타당성을 평가하기 위한 기준이 필요하다. 또한 평가기준에 영향을 미치는 설계요구조건(설계변수)이 명확히 검토되어야 한다. 따라서 본 논문에서는 처분용기의 구조설계 요구조건(설계변수)과 구조 안전성 평가기준을 도출하고자 한다.
        4,000원