Lipopolysaccharide (LPS) is an endotoxin factor present in the cell wall of Gram-negative bacteria and induces various immune responses to infection. Recent studies have reported that LPS induces cellular stress in various cells including oocytes and embryos. Melatonin (N-acetyl-5-methoxytryptamine) is a regulatory hormone of circadian rhythm and a powerful antioxidant. It has been known that melatonin has an effective function in scavenging oxygen free radicals and has been used as an antioxidant to reduce the cytotoxic effects induced by LPS. However, the effect of melatonin on LPS treated early embryonic development has not yet been confirmed. In this study, we cultured mouse embryos in medium supplemented with LPS or/and melatonin up to the blastocyst stage in vitro and then evaluated the developmental rate. As a result of the LPS-treatment, the rate of blastocyst development was significantly reduced compared to the control group in all the LPS groups. Next, in the melatonin only treated group, there was no statistical difference in embryonic development and no toxic effects were observed. And then we found that the treatment of melatonin improved the rates of compaction and blastocyst development of LPS-treated embryos. In addition, we showed that melatonin treatment decreased ROS levels compared to the LPS only treated group. In conclusion, we demonstrated the protective effect of melatonin on the embryonic developmental rate reduced by LPS. These results suggest a direction to improve reproduction loss that may occur due to LPS exposure and bacterial infection through the using of melatonin during in vitro culture.
Partheno Embryo's research is known to play a very important role in identifying the development of embryonic cells or analyzing the genetic mechanisms of embryonic development, but the information on apoptosis formed during the early stage of development on Partheno Embryo is very little. Therefore, this study analyzed whether the embryonic cell death of unit embryos can be inhibited by adding Scriptaid, one of HDACi, which plays a role in demethylation of histone proteins as a method of regulating the cell cycle in the early embryo development of Partheno Embryo. As a result, the differentiation rate was higher in the group that added Scriptaid and FBS, but the cellular development was higher in the group that added pregnant serum to Scriptaid. As a result of analyzing the expression of the gene through IF and PCR, the group with the addition of gestational serum increased the expression of BCL2 and PCNA, which affects the anti-Casp3 action in cell survival. In addition, it is interpreted that treatment of Scriptaid for 16 hours, rather than 24 h treatment lowers the expression of Casp-3, a representative factor of apoptosis, and also increases embryonic development, thus affecting early embryo development. Therefore, it is concluded that the 16-hour treatment of Scriptaid and the use of gestational serum will inhibit cell death in the early embryonic development and increase the development rate of the embryo.
This study was investigated to test whether the zygote recognized the topoisomerase II beta (TOP2B) mediated DNA fragmentation in epididymal spermatozoa or the nuclease degradation in vas deferens spermatozoa by testing for the presence of gammaH2AX (γH2AX). The γH2AX is phosphorylation of histone protein H2AX on serine 139 occurs at sites flanking DNA double-stranded breaks (DSBs). The presence of γH2AX in the pronuclei of mouse zygotes which were injected with DNA broke epididymal spermatozoa was tested by immunohistochemistry at 5 and 9 h post fertilization, respectively. Paternal pronuclei that arose from epididymal spermatozoa treated with divalent cations did not stain for γH2AX at 5 h. On the other hand, in embryos injected with vas deferences spermatozoa that had been treated with divalent cations, γH2AX was only present in paternal pronuclei, and not the maternal pronuclei at 5 h. Interestingly, both pronuclei stained positively for γH2AX for all treatments and controls at 9 h after sperm injection. In conclusion, the embryos recognize DNA that is damaged by nuclease, but not by TOP2B because H2AX in phosphorylated in paternal pronuclei resulting from spermatozoa treated with fragmented DNA from vas deferens spermatozoa treated with divalent cations, but not from epididymal spermatozoa treated the same way.
Doxorubicin, a widely used chemotherapeutic agent, were found rapidly undergo morphological and biochemical changes via discrete effector signaling pathways consistent with the occurrence of apoptosis of oocyte, and a little known is actions of this drug in early embryos. Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, also plays the important role during the apoptosis of cell. The cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Cleaved PARP (cPARP) can be a marker of apoptosis.Doxorubicin inhibited the early embryo development, but the treatment could still reach the BL (blastocyst) stagethat suggested that involved in DNA synthesis and repaired progress. Herein, the higher expression of PARP family shown especially in 2, 4 cell stagy. There was evidence of expression of Caspase3 and Bcl2l1 during embryogenesis (2 cell, 4 cell, morula and BL stage), suggesting that modulationsof apoptosis-related genes and PARP were cause by DXR. Furthermore, the effect of doxorubicin on early embryo development was assessed different stage rates, and apoptosis index also conformed doxorubicin modulate embryo development by regulating apoptosis- related genes and PARP family genes. In conclusion, Doxorubicin blocked pre- implantation development in early mouse embryos by altering apoptosis-related gene expression and inactivating DNA repair by Parp.
Doxorubicin, a widely used chemotherapeutic agent, were found rapidly undergo morphological and biochemical changes via discrete effector signaling pathways consistent with the occurrence of apoptosis of oocyte. In this report, we elucidated the molecular requirements for actions of this drug in early embryos. Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues have recently been shown in female oocyte cells. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Cleaved PARP (cPARP) may be considered a marker of apoptosis. Doxorubicin inhibited the early embryo development, but the treatment could still reach the BL (blastocyst) stage that suggested that involved in DNA synthesis and repaired progress. Herein, the higher expression of PARP family shown especially in 2, 4 cell stagy. There was evidence of expression of Caspase3 and Bcl2l1 during embryogenesis (2 cell, 4 cell, morula and BL stage), suggesting that modulations of apoptosis-related genes and PARP were cause by DXR. Furthermore, the effect of doxorubicin on early embryo development was assessed different stage rates, and apoptosis index also conformed doxorubicin modulate embryo development by regulating apoptosis-related genes and PARP family genes. In conclusion, Doxorubicin blocked pre-implantation development in early mouse embryos by altering apoptosis-related gene expression and inactivating DNA repair by Parp.
In the present study, we identified differentially methylated region (DMR) upstream of Dnmt1o and Dnmt1s gene in early porcine embryos. Porcine Dnmt1o had at least one DMR which was located between —530 bp to —30 bp upstream from transcription start site of the Dnmt1o gene. DNA methylation analyses of Dnmt1o revealed the DMR to be hypomethylated in oocytes, whereas it was highly methylated in sperm. Moreover, the DMR upstream of Dnmt1o was gradually hypermethylated from oocytes to two cells and dramatically changed in the methylation pattern from four cells to BL stages in an in vivo. In an IVF, the methylation status in the DMR upstream of Dnmt1o was hypermethylated from one cell to eight cells, but demethylated at the Morula and BL stages, indicating that the DNA methylation pattern in the Dnmt1o upstream ultimately changed from stage to stage before the implantation. Next, to elucidate whether DNA methylation status of Dnmt1s upstream is stage-by-stage changed in during porcine early development, we analyzed the dynamics of the DNA methylation status of the Dnmt1s locus in germ cell, or one cell to BL cells. The Dnmt1s upstream was highly methylated in one and eight cells, while less methylated in two, four, morula, and BL cells. Taken together, our data demonstrated that DNA methylation and demethylation events in upstream of Dnmt1o/Dnmt1s during early porcine embryos dramatically occurred, and this change may contribute to the maintenance of genomewide DNA methylation in early embryonic development.
본 연구에서는 유전적 가치가 높은 가축을 OPU 기술을 이용하여 단기간에 반복적이고 연속적으로 생체 내 난포란을 채란하여 수정란을 생산할 수 있는 가능성을 연구한 것으로써, 수정란의 안정적인 생산 및 이식으로 가축 개량의 세대 간격을 단축하기 위해 우수한 유전력을 가진 염선된 개체의 임신 초기 3개월 동안에 반복적인 수정란 생산 가능 여부를 조사하였다. 1. 비임신우 및 임신 초기우에 2회/주 채란으로 비인신우에서는 68회 채란으로 생성된 난포수는 72
배분화과정시 나타나는 변화에 미치는 의 영향을 알아보고자 whole cell voltage clamp 기법, 방사선 등위원소 면역측정법, 그리고 공초점 현미경을 통하여 처리 후 나타나는 전류 변화 및 세포내 농도 변화를 조사하였다. 생쥐의 미성숙 난자는 난소의 난포를 천자하고, 배란난자는 과배란 처리 후 난관에서 회수하였다. 수정란은 과배란 처리 후 수컷 생쥐와 교미를 유도한 후 각각의 단계에 맞는 수정란을 채란하였다. 혈중 의 농도는 심장을 천자하여
The aims of this study are to establish a stable isolation method of blastomeres from bovine early embryos and examine their developmental potential in vitro Early embryos were produced by maturation and fertilizaion in vitro of bovine follicular oocytes. Blastomeres were isolated from 2~8-cell embryos in +-, +-free PBS+EDTA after removing the zonae pellucidae Isolated blastomeres were cultured in CZB containing BOEC for upto 240 hpi. Cleavage rates of them were 18.5%(10 /54) in 1 /2 blastomeres, 33.3%(16/48) in 1/4 blastomeres and 34.2%(14 /41) in 1/8 blastomeres, respectively. The rates of blastocystic vesicle formed were 8.7%(4 /46) in 1/2 blastomeres, 26.6% (17/64) in 1/4 blastomeres and 10.3%(8 /78) in 1/8 blastomeres, respectively. Blastomeres developed into various types of blastocystic vesicles and trophoblastic vesicles as evidenced by the Hoechst 33258 staining and morphology. This results suggest that the isolation method used and subsequent culture of isolated blastomeres from bovine early embryos should be useful to obtain extra embryonic cells for various analyses such as PCR and putative ES cell culture.
This study was performed to establish the condition and the methods for the techniques of insertion the isolated blastomere cells into cytoplasm, in order to research the develop-mental ability of bovine embryo blastomere cells in vitro produced. After 24h in vitro ovary maturation with the ovaries from a slaughter house, in vitro fertilization was performed to the vital sperms which their mobility were decided by percoll gradient method, with 2~8 cell stage embryos, the blastomeres were isolated in +. +-free PBS, and following that embedded into agar and alginate solution, respectively. The rates of in vitro develop-ment are as follows ; in agar embedded 11 among 120(9.2%) 1 /2~1 /3 blastomers cleaved and 6 among 93(6.5%) 1 /4~1 /8 blastomeres cleaved. In sodium alginate-embedded 14 among 84(16.7%) 1 /2~1 /3 blastomeres cleaved and 6 among 85(7.1%) 1 /4~1 /8 blastomeres cleaved. In case of Na-alginate, the rate of the cells were better than those of agar. The results suggest that the techniques for embeeding the isolated blastomeres into gel may help cloning of bovine early embryo without nuclear transplantation.
Early maturing glutinous rice lines with giant embryo were developed using anther culture. Deuraechan, mid-late maturing high-yielding japonica rice variety with resistance against rice stipe virus (RSV), bacterial blight (BB), and lodging, and Chenghyangna ge, early maturing glutinous rice germplasm with giant embryo were used the parents. F2 seeds from the cross between Deuraechan and Chenghyangna ge with glutinous endosperm and giant embryo were selected and propagated to F2 population. In F2 population, anther culture was conducted using the panicles from the early maturing plants. All doubled haploid (DH) lines showed early maturing, glutinous endosperm, and giant embryo phenotype. Through marker-assisted selections to Stvb-i and Xa3, 17 DH lines carrying both resistance genes were selected. Among 17 DH lines, six lines with more embryo size and better agronomic traits were selected and analyzed their characteristics. These lines were early maturing glutinous rice with giant embryo and showed enhanced yield, resistance against RSV and BB, and lodging, compared to previously developed giant embryo rice varieties. But they were vulnerable to preharvest sprouting which is important trait in early maturing rice. According to the texture and rapid viscosity analysis, DH lines were considered to have appropriate properties of cooked brown rice. They showed less hardness, gummniess, chewiness, and setback. Developed DH lines could be useful materials for diversification of cropping system and enhancing the brown rice consumption but the breeding efforts to improve the vulnerability against preharvest sprouting is required to apply for practical variety.
p63은 다양한 상피 조직의 줄기세포와 전구세포에 존재한다는 사실이 잘 알려져 있으나, 치아 형성, 특히 사기질과 뿌리 형성시기에서의 p63 위치느 ㄴ아직 연구해야 할 과제로 남아 있다. 본 연구에서는 p63이 치아 발생 동안 치아상피에 편재하여 나타나는 것을 면역조직화학 기법을 이용하여 확인하였다. p63은 피부, 모낭, 구강점막 그리고 턱밑샘 도관을 포함하는 상피의 바닥층과 바닥위층에 위치하였다. 그러나 치아 부위에서는 치아관의 모든 세포, 사기질기
세포내 칼슘은 다양한 세포에서 중요한 생리적 반응을 일으키며, ruthenium red와 ryanodine은 중요한 칼슘 조절자로 작용한다. Ruthenium red는 세포내 칼슘 저장고에서의 calcium induced calcium release(CICR)를 저해한다. Ryanodine은 ryanodine 통로를 통한 칼슘 방출을 촉진한다. 본 실험은 두 조절자가 생쥐 난자와 초기배아의 세포내 칼슘이온 농도에 영향을 미치는지 여부와 그 유효농도를 알