검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni-CNT nanocomposites were synthesized via the electrical explosion of wire (EEW) in acetone and deionized (DI) water liquid conditions with different CNT compositions. The change in the shape and properties of the Ni-CNT nanopowders were determined based on the type of fluids and CNT compositions. In every case, the Ni nanopowder had a spherical shape and the CNT powder had a tube shape. However, the Ni-CNT nanopowders obtained in DI water exhibited irregular shapes due to the oxidation of Ni. Phase analysis also revealed the existence of nickel oxide when using DI water, as well as some unknown peaks with acetone, which may form due to the metastable phase of Ni. Magnetic properties were investigated using a Vibrating Sample Magnetometer (VSM) for all cases. Nanopowders prepared in DI water conditions had better magnetic properties than those in acetone, as evidenced by the simultaneous formation of super paramagnetic NiO peaks and ferromagnetic Ni peaks. The DI water (Ni:CNT = 1:0.3) sample revealed better magnetic results than the DI water (Ni-CNT = 1:0.5) because it had less CNT contents.
        4,000원
        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.
        4,000원
        3.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Nigraphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.
        4,200원
        4.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe3O4/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, Fe3O4/Fe nanocomposites are fabricated under the same conditions. The Fe3O4/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The Fe3O4/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the Fe3O4/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for Fe3O4/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.
        4,000원
        5.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.
        4,000원
        6.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, Xray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric dischargecharge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.
        4,000원
        7.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.
        4,000원
        8.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of oxygen content in the ultrafine tungsten powder fabricated by electrical explosion of wire method on the behvior of spark plasma sintering was investigated. The initial oxygen content of 6.5 wt% of as-fabricated tungsten powder was reduced to 2.3 and 0.7 wt% for the powders which were reduction-treated at 400˚C for 2 hour and at 500˚C for 1h in hydrogen atmosphere, respectively. The reduction-treated tungsten powders were spark-plasma sintered at 1200-1600˚C for 100-3600 sec. with applied pressure of 50 MPa under vacuum of 0.133 Pa. Maximun sindered density of 97% relative density was obtained under the condition of 1600˚C for 1h from the tungsten powder with 0.7 wt% oxygen. Sintering activation energy of 95.85kJ/mol-1 was obtained, which is remarkably smaller than the reported ones of 380~460kJ/mol-1 for pressureless sintering of micron-scale tungsten powders.
        4,000원
        9.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.
        4,000원
        10.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Ni alloy nano powders have been produced by the electrical explosion of Ni-plated Al wire. The porous nano particles were prepared by leaching for Al-Ni alloy nano powders in 20wt% NaOH aqueous solution. The structural properties of leached porous nano powder were investigated by nitrogen physisorption, X-ray diffraction (XRD) and transmission Microscope (TEM). The surface areas of the leached powders were increased with amounts of AI in alloys. The pore size distributions of these powders were exhibited maxima at range of pore diameters 3.0 to 3.5 nm from the desorption isotherm. The maximum values of those were decreased with amounts of Al in alloys.
        4,000원
        11.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).
        4,000원
        12.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ag-Cu alloy nano powders were fabricated by the electrical explosion of Cu-plated Ag wires. Ag wires of 0.2mm diameter was electroplated to final diameter of 0.220 mm and 0.307 mm which correspond to Ag-27Cu and Ag-68Cu alloy. The explosion product consisted of equilibrium phases of and -Cu. The particle size of Ag-Cu nano powders were 44 nm and 70 nm for 0.220 mm and 0.307 mm wires, respectively. The Ag-Cu nano powders contained less Cu than average value due to higher sublimation energy compared to that of Ag. As a result, micron-sized spherical particles formed from liquid droplets contained higher Cu content.
        4,000원
        13.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Cu alloy nano powders were produced by the electrical explosion of Cu-plated Al wires. The composition and phase of the alloy could be controlled by varying the thickness of Cu deposit on Al wire. When the Cu layer was thin, Al solid solution and were the major phases. As the Cu layer becomes thicker, Al diminished while phase prevailed instead. The average particle size of Al-Cu nano powders became slightly smaller from 63 nm to 44 nm as Cu layer becomes thicker. The oxygen content of Al-Cu powder decreased linearly with Cu content. It is well demonstrated that the electrodeposition combined with wire explosion could be simple and economical means to prepare variety of alloy and intermetallic nano powders.
        4,000원
        15.
        2003.06 구독 인증기관·개인회원 무료
        를 금속와이어에 인가하면 저항발열에 의해 와이어가 미세한 입자나 금속증기상태로 폭발하는 현상을 이용한 것으로 기상합성법에 속한다고 할 수 있다. 선폭법은 다른 제조법에 비해 공정이 간단하여 생산비용이 저렴하며, 원재료의 조성을 갖는 분말의 합성과 금속간화합물, 융점차이가 나는 재료의 합금화 등이 가능하다. 인가에너지의 크기와 폭발 시 분위기를 제어함으로써 분말의 평균크기와 분포 제어 또한 가능하다. 본 연구는 러시아의 우수한 기초기술을 바탕으로 Pb-S
        16.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work some properties of nanopowders and possible areas of their applications are discussed. Main attention is paid to the use of nanodispersed powders (NDP) in new materials production technologies.
        4,000원