검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 89

        21.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For electrodes in electrochemical double-layer capacitors, carbon nanofibers (CNFs) were prepared by thermal treatment of precursor polymer nanofibers, fabricated by electrospinning. Poly(acrylonitrile-co-vinylimidazole) (PAV) was employed as a precursor polymer of carbon nanofibers due to the effective cyclization of PAV polymer chains during thermal treatment compared to a typical precursor, polyacrylonitrile (PAN). PAV solutions with different comonomer compositions were prepared and electrospun to produce precursor nanofibers. Surface images obtained from scanning electron microscopy showed that their nanofibrous structure was well preserved after carbonization. It was also confirmed that electrospun PAV nanofibers were successfully converted to carbon nanofibers after the carbonization step by Raman spectroscopy. Carbon nanofiber electrodes derived from PAV showed higher specific capacitances and energy/power densities than those from PAN, which was tested by coin-type cells. It was also shown that PAV with an acrylonitrile/vinylimidazole composition of 83:17 is most promising for the carbon nanofiber precursor exhibiting a specific capacitance of 114 F/g. Their energy and power density are 70.1 Wh/kg at 1 A/g and 9.5 W/kg at 6 A/g, respectively. In addition, pouch cells were assembled to load the higher amount of electrode materials in the cells, and a box-like cyclic voltammetry was obtained with high capacitances.
        4,000원
        22.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have studied a method to prepare polydopamine-modified reduced graphene oxide-supported Pt nanoparticles (Pt– PDA–RGO). The Pt–PDA–RGO nanocomposites were synthesized by a wet-coating process, which was induced by selfpolymerization of dopamine. As an eco-friendly and versatile adhesive source in nature, dopamine could be easily adhered to surfaces of organic material and inorganic material via polymerization processes and spontaneous adsorption under weak alkaline pH conditions. To apply the unique features of dopamine, we synthesized Pt–PDA–RGO nanocomposites with a different quantity of dopamine, which are expected to preserve the improved Pt adsorption on graphene, resulting in the enhanced electrocatalytic performance. The morphology and micro-structure were examined by field emission scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Compared to pristine Pt–deposited RGO (Pt–RGO), Pt–PDA–RGO (30 wt% dopamine against RGO) nanocomposites showed a superior electrochemical active surface area for a methanol oxidation. This could be related to the fact that the optimized c
        4,000원
        23.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned TiO2 nanotube (NT) electrodes. The highly uniform TiO2 NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of TiO2 NT electrodes
        3,000원
        24.
        2018.11 구독 인증기관·개인회원 무료
        Capacitive deionization (CDI) process is an emerging process for water desalination. Recently, there has been a major development of architectures in CDI cells using carbon flow electrodes with membrane, called flow-electrode capacitive deionization (FCDI). In FCDI, the advantage is continuous desalination due to the carbon flow electrodes. Numerous research groups dedicated to develop the FCDI process, however, a clear pre-treatment of carbon flow electrodes was not suggested. Study herein, present a clear understanding of effects of pre-treatment of activated carbon based on sonication in the carbon flow electrodes for the basics results with respect to adsorption performance.
        25.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 활성탄소섬유를 이용하여 축전식 탈염공정에 적용할 탄소전극을 제조하였다. polyvinylidene fluoride (PVDF)를 바인더로 사용했으며 적절한 용매에 활성탄소섬유를 배합한 후 상용의 그라파이트 시트에 캐스팅하여 탄소전극을 제조하였다. 이 때 활성탄소섬유의 입자 크기를 달리하였고, 용매, 고분자 바인더 그리고 활성탄소섬유를 80 : 2 : 18, 80 : 5 : 15의 배합비율로 전극을 제조하였다. 그런 다음 염 제거 효율을 흡착전압과 시간, 탈착전압과 시간, NaCl 공급액의 농도와 유속 등에 운전조건에 대하여 염 제거 효율을 측정하였다. 대표적으로 활성탄소섬유의 입자크기가 32 μm 이하이며 80 : 2 : 18의 배합비율에서 1.2 V, 3분의 흡착조건, -0.1 V, 1분의 탈착조건, NaCl 100 mg/L, 15 mL/min의 공급액 조건에서 53.6%의 염 제거 효율을 보였다.
        4,000원
        26.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, a membrane electrode assembly(MEA) composed of three electrodes(anode, cathode, and reference electrode) is designed to investigate the effects of methanol concentration on the overpotentials of anode and cathode in direct methanol fuel cells(DMFCs). Using the three-electrode cell, in-situ analyses of the overpotentials are carried out during direct methanol fuel cell operation. It is demonstrated that the three-electrode cell can work effectively in transient state operating condition as well as in steady-state condition, and the anode and cathode exhibit different overpotential curves depending on the concentration of methanol used as fuel. Therefore, from the real-time separation of the anode and cathode overpotentials, it is possible to more clearly prove the methanol crossover effect, and it is expected that in-situ analysis using the three-electrode cell will provide an opportunity to obtain more diverse results in the area of fuel cell research.
        4,000원
        29.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or 1 M Na2SO4 electrolyte solution. The highest specific capacitance was 1622 F g–1 obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon nanotubes/Ni(OH)2 (20 wt%) composite had the maximum specific capacitance of 1149 F g–1. The specific capacitance and rate-capability of the CNT/MnO2/reduced graphene oxide (RGO) composites were improved as compared to the MnO2/RGO composites without CNTs. The MnO2/RGO composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of 208.9 F g–1 at a current density of 0.5 A g–1 and 77.2% capacitance retention at a current density of 10 A g–1.
        4,200원
        30.
        2017.12 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 전도성 고분자인 polystyrene sulfonic acid doped poly~3,4-ethylenedioxythiophene (PEDOT:PSS)을 소스/드레인 전극으로 사용한 펜타센 단분자 유기 반도체 기반의 전계효과 트랜지스터를 제작하고, 금을 소스/드레인 전극으로 하는 기준소자와 전기적 특성을 비교하여 평가하였다. 전기적 특성을 측정한 결과, PEDOT:PSS 박막은 금 박막에 비해 상대적으로 낮은 전도도를 가짐에도 불구하고 PEDOT:PSS 소스/드레인 전극을 갖는 펜타센 유기 트랜지스터는 금을 소스/드레인 전극으로 갖는 기준 소자와 비교할 만한 성능을 보였다. 이는 PEDOT:PSS와 펜타센 사이의 접촉저항이 금과 펜타센 사이의 접촉저항보다 낮아 상대적으로 낮은 전기전도도에 의한 성능 저하를 보상하기 때문으로 추측된다.
        4,000원
        31.
        2017.11 구독 인증기관·개인회원 무료
        The reactions at triple phase boundary are unique to be found in fuel cells, which infer that focal points where ion exchangeable polymer to conduct water hydrated ions, electronic conductor to conduct electron and gases in pores of electrodes meet simultaneously allows complete full fuel cell reactions. Ion exchangeable polymer dispersed in solvents could be only introduced in catalyst ink due to difficulty in forming nano-scale body. Thus, new dispersion techniques for ion exchangeable polymers is necessarily developed.
        32.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A dimensionally stable anode based on the RuO2 electrocatalyst is an important electrode for generating chlorine. The RuO2 is well-known as an electrode material with high electrocatalytic performance and stability. In this study, sonoelectrodeposition is proposed to synthesize the RuO2 electrodes. The electrode obtained by this novel process shows better electrocatalytic properties and stability for generating chlorine compared to the conventional one. The high roughness and outer surface area of the RuO2 electrode from a new fabrication process leads to increase in the chlorine generation rate. This enhanced performance is attributed to the accelerated mass transport rate of the chloride ions from electrolyte to electrode surface. In addition, the electrode with sonodeposition method showed higher stability than the conventional one, which might be explained by the mass coverage enhancement. The effect of sonodeposition time was also investigated, and the electrode with longer deposition time showed higher electrocatalytic performance and stability.
        4,200원
        33.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RuO2 is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of RuO2 electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, RuO2 nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained RuO2 nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The RuO2 nanorod 80 nm in length and 20-30 nm in width and the RuO2 nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated RuO2 nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.
        4,000원
        36.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Dinickel-silicide (Ni2Si)/glass was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. Ni2Si was formed by rapid thermal annealing (RTA) at 700 oC for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, Ni2Si on quartz was also prepared through conventional electric furnace annealing (CEA) at 800 oC for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of Ni2Si. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano thick- Ni2Si phase. The catalytic activity of CEA-Ni2Si and RTA-Ni2Si with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with CEA-Ni2Si and RTA-Ni2Si catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick Ni2Si may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nanothick Ni2Si can be made available on a low-cost glass substrate via the RTA process.
        4,000원
        37.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To establish low-temperature process conditions, process-property correlation has been investigated for Ga-doped ZnO (GZO) thin films deposited by pulsed DC magnetron sputtering. Thickness of GZO films and deposition temperature were varied from 50 to 500 nm and from room temperature to 250 oC, respectively. Electrical properties of the GZO films initially improved with increase of temperature to 150 oC, but deteriorated subsequently with further increase of the temperature. At lower temperatures, the electrical properties improved with increasing thickness; however, at higher temperatures, increasing thickness resulted in deteriorated electrical properties. Such changes in electrical properties were correlated to the microstructural evolution, which is dependent on the deposition temperature and the film thickness. While the GZO films had c-axis preferred orientation due to preferred nucleation, structural disordering with increasing deposition temperature and film thickness promoted grain growth with a-axis orientation. Consequently, it was possible to obtain a good electrical property at relatively low deposition temperature with small thickness.
        4,000원
        38.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.
        4,000원
        40.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        One-dimensional (1D) silver nanostructures, which possess the highest conductivity among all room-temperature materials, moderate flexibility and high transmittance, are one of the most promising candidate materials to replace conventional indium tin oxide transparent electrodes. However, the short length and large diameter of 1D silver nanostructures cause a substantial decrease in the optical transparency or an increase in the sheet resistance. In this work, ultra-long silver nanofiber networks were synthesized with a low-cost and scalable electrospinning process, and the diameter of the nanofibers were finetuned to achieve a higher aspect ratio. The decrease in the diameter of the nanofibers resulted in a higher optical transparency at a lower sheet resistance: 87 % at 300 Ω/sq, respectively. It is expected that an electrospun silver nanofiber based transparent electrode can be used as a key component in various optoelectronic applications.
        4,000원
        1 2 3 4 5