The objectives of this study is to classify evacuation types, derive the characteristics of 4 types, develop and discover evacuation routes within the performance hall space, and present the statistical classification results of the evacuation classification model by classification type. To achieve this purpose, the characteristics of each evacuation type's four types are applied through a network reliability analysis method and utilized for institutional improvement and policy. This study applies for the building law, evacuation and relief safety standards when establishing a performance hall safety management plan, and reflects it in safety-related laws, safety standards, and policy systems. Statistical data by evacuation type were analyzed, and measurement characteristics were compared and analyzed by evacuation types. Evaluate the morphological similarity and reliability of evacuation types according to door width and passage length and propose the install position of evacuation guidance sign boards. The results of this study are expected to be used as basic data to provide operation strategies for safety facility evacuation information sign boards according to evacuation route classification types when taking a safety management plan. The operation strategy for the evacuation sign boards installation that integrates employee guidance and safety training is applied to the performance hall safety management plan. It will contribute to establishing an operational strategy for performance space safety when constructing performance facilities in the future.
The purpose of this study is to propose measures to increase evacuation safety by calculating the habitable time using a fire and evacuation simulation program for the Room-escape cafe currently in operation, and comparing and analyzing it with the evacuation required time. Assuming a fire due to overheating of electric heaters in use in front of the warehouse, the habitable time was calculated through fire simulation, and the occupant's evacuation time calculated through evacuation simulation according installation of safety facilities, etc. was compared and analyzed with the habitable time. In the case of escape room cafes with safety facilities installed, evacuation safety was satisfied, but in escape room cafes without safety facilities, the evacuation safety was not secure. As a result of analyzing evacuation safety for each scenario based on the ASET analyzed in the fire simulation, it was found that in scenario 1, evacuation safety was secured and everyone successfully evacuated, while in scenario 2, no one succeeded in evacuation. These results can be said to confirm that the installation of safety facilities is very important in business establishments such as escape room cafes, which become enclosed structures when games are started.
Human and material damage can be reduced if the risk is evaluated by engineering analysis of fire combustion products, smoke concentration, and smoke movement speed in the event of a fire in apartment houses and officetels. In this study, a lot of research on related safety evaluation in the basement needs to be studied and reflected in design, so experimental research was conducted to analyze the flow of smoke through computer simulation and provide analysis data through evacuation safety evaluation. First of all, the five-story underground parking lot subject to simulation has a large floor area, which is advantageous for improving evacuation safety performance, but it uses temperature detectors to increase detection time and fire spread speed. Second, it was analyzed that the evacuation time at all evacuation ports did not exceed the evacuation time, and as the time from the start of evacuation to the evacuation time was 216.9% compared to the travel time, it was evaluated that the safety performance of the evacuation was secured. Third, the above simulation results are a comprehensive safety evaluation based on the non-operation of fire extinguishing facilities in the fire room to increase safety, which means that smoother evacuation safety performance can be secured by linking fire extinguishing facilities.
항해 중인 선박은 해양 기상의 악화에 큰 영향을 받으므로 적절하게 대비하 여야 한다. 특히, 강력한 바람과 높은 파고를 동반하는 태풍은 선박에 치명적일 수밖에 없으며, 인명 손상과 재산상 피해, 해양오염을 유발하는 해양사고로까지 이어지기도 한다. 이러한 해양사고를 예방하기 위하여 태풍의 내습이 예보되면 선박은 안전한 해역을 선정하여 피항하여야 하며, 외부적으로 피항 중인 선박 에 대한 안전관리가 이루어져야 한다. 그러나 해마다 다수의 태풍이 발생하고, 우리나라에도 영향을 미치고 있지 만, 선박에 대한 피항지 지정과 안전관리가 원만하게 이루어지지 못하고 있다. 태풍이 내습할 때마다 많은 선박이 피항지 선정에 어려움을 겪고 있으며, 피항 중 충돌, 좌초 등 각종 사고가 발생하고 있다. 따라서 태풍 등 기상악화에 기인 한 선박에 대하여 피항지를 제공하여 조난을 예방하고, 피항 중인 선박을 안전 하게 관리할 수 있는 법제적 개선방안을 마련할 필요가 있다. 이 연구는 우리나라에 영향을 미치는 태풍의 현황과 태풍 및 기상악화에 의 한 해양사고 사례분석을 통해 태풍 피항지 지정의 필요성을 검토한다. 그리고 유엔해양법협약을 비롯한 국제규범과 국내 법령을 살펴보고, 외국선박에 대한 연안국의 태풍 피항지 제공 의무가 존재하는지, 태풍 피항 관련 국내법의 실효 성이 있는지를 검토하며, 태풍 피항지를 지정하여 운영함에 따라 발생할 수 있 는 법적 쟁점에 대하여 고찰하고자 한다. 그리고 태풍 내습에 대비한 피항지 지정 및 피항 선박 안전관리 방안을 제시한다.
This study analyzed the appropriate placement method by floor for evacuating all occupants during the nighttime through evacuation simulation. The analysis results are as follows. First, when non-self evacuating patients were placed on the first floor, 266 patients and 6 workers were found to be evacuated after 460 seconds. This result shows that it is meaningful to place non-self evacuating patients on the lower floor with a time that is faster than 540 seconds, which is an evaluation criterion set using life Safety standards for human. This result is a time faster than the evaluation criteria of 540 seconds, which is set using the life safety standards, and it can be confirmed that it is meaningful to place non-self evacuating patients on the lower floor. Next, as a result of placing non-self evacuating patients from the first floor to the fourth floor, it was found that evacuation of all occupants required 460 seconds for the first floor, 834 seconds for the second floor, 1,508 seconds for the third floor, and 1,915 seconds for the fourth floor. These results indicate that the placement of non-self evacuating patients on the rest of the floors, except for the first floor, can lead to dangerous results in excess of 540 seconds, which is a flashover time. As a result, it is necessary to place non-self evacuating patients on a lower floor for safe evacuation. The study has limitations except for comparative analysis of changes in evacuation time due to changes in the number of workers at eldery care hospitals and situations in which fire-fighting facilities such as sprinkler facilities operated. It is necessary to study the evacuation time linked to the operation of the fire-fighting facilities and the evacuation time according to the change in the number of workers in the future.
This study analyzed the evacuation time in indoor stadiums when exits that automatically open/close when the fire sensor is triggered are installed as a means to improve the problem of closing certain exits. Firstly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all inhabitants was 529.8 seconds when the automatic opening/closing exits are broken and employees are not present. Secondly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all inhabitants was 445 seconds when the automatic opening/closing exits with 750mm width are working but employees are not present. Lastly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all spectators was 337 seconds when the automatic opening/closing exits with 1,500mm width are working and employees are present. As a result, it was revealed that the evacuation time is shortened when the automatic opening/closing exits are working. Additional comparative studies with actual simulations of people evacuating an indoor stadium and firefighting simulations considering smoke flow are necessary.
In this study, fire and evacuation safety of environmental energy facilities using fire and evacuation simulation was examined as part of performance-oriented design. The worst-case fire scenarios in which fire-fighting facilities such as sprinkler fire extinguishing and smoke control systems are not working, and the FDS analyzes the visibility, temperature distribution, and carbon monoxide concentration distribution through FDS. The safety was examined. As a result, it was proved that evacuation could limit the visibility, temperature, and carbon monoxide concentration in a smooth range, based on the safety standards set by relevant laws. In other words, it was possible to verify the safety of fire and evacuation for environmental energy facilities where a large amount of combustibles and fires coexist.
In this paper, we analyzed the safety on static and dynamic characteristics of a top-down evacuation instrument fixed on the exterior walls of a building using finite element analysis. For this purpose, the stress distribution characteristics of the H-beam structure were analyzed and the equivalent stress distribution, deflection displacement and natural frequency characteristics of the overall structure of the evacuation instrument were analyzed. The structures were applied with the materials of SS440 and SUS304. The static analysis results showed the elastic behavior with safety coefficients from 2.4 to 2.9, by confirming the structural safety. In addition, the analysis of the natural frequency characteristics confirmed that the vibration characteristics were higher than the external conditions of 20Hz.
본 연구는 선박에서 발생할 수 있는 화재연기의 위험성을 인식시키고 비상대응능력을 향상시키기 위해 선내에 안전교육을 위 한 환경을 구축하고 시나리오를 개발 운영하면서 획득한 실습생의 상황별 이동특성을 측정분석한 것으로, 그 결과를 정리하면 다음과 같다. 연기가 없는 조건에서는 익숙한 이동경로에 장애가 발생한 경우와 그렇지 않은 경우의 각 피난이동 상대속도 사이에 차이가 없지만, 실내에 연기가 충진되어 가시도가 매우 낮은 조건에서는 시야불량에 따른 이동능력 저하로 인해 그렇지 않은 경우에 비해 평균상당속도 가 62.5% 감속되었다. 시나리오에 관계없이 단순이동경로에 비해 복잡이동경로의 평균 상당속도가 빠르고 표준편차도 작게 나타났다. 연기가 충진된 경우에 대한 단순 데이터 평가에서는 전체이동경로와 복잡이동경로의 상대속도 확률분포가 매우 유사하였지만, 전체이동경 로의 상대속도에 대한 복잡이동경로의 상대속도비율의 개인간 변동폭은 매우 컸다. 한편, 상당속도는 가시거리의 로그함수로 표현할 수 있었다. 또한 실습생의 긴장감이 증가하면서 모든 경로에서 상대속도가 빨라졌다.
In this study, it was simulated and analyzed the evacuation safety to identify the cadets’ evacuation time by using maritimeEXODUS which is applied IMO MSC.1/Circ.1238 theory as well as the trim and heel which are the major factor of reducing the ship evacuation speed. In addition, this study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature 60°C and resulted that there is no influence in evacuation by temperature. As a result of the analysis on visibility evacuation limit 5 m, it was found that the only one evacuation rallying point could not meet the evacuation safety. However, it derived the perfect evacuation safety under the condition of two rallying points available on wood fire. In case of Kerosene, it was satisfied the evacuation safety if the heeling was under 10°. Moreover, it could not meet the evacuation safety by evacuating through upper deck although there were two evacuation rallying points. When it was set by the lifeboat descending maximum angle-20°heel and 10°trim which was described in SOLAS regulation, it was simulated that the wood fire having two evacuation rallying points in the center of the ship satisfied the evacuation safety.
This study investigated the smoke blocking and control systems for the safety of residents evacuation and for the prevention of smoke spread through the central corridor in the event of central corridor type of intelligent building fire. We offered additional ways of utilizing smoke ventilators and intake ventilation equipment and utilized CFD-based fire simulation program(FDS Ver.5.5.3) in order to analyze the effect. As a result, many differences in the smoke block effect, depending on the application of smoke ventilator and location of installation, was found. In addition, the result was found that larger effect was showed not in the case of application of smoke ventilator in central corridor only but application in fire room. The reason is that the smoke leakage is blocked primarily as air is flowed in the fire room through open door by operation of intake smoke ventilator in the public corridor and secondarily, the smoke leakage to the public corridor could be blocked as fire and smoke were released to the opened smoke ventilator continuously. Especially, the effect was maximized through complex interactions by applying smoke ventilator and intake ventilation equipment in corridor together rather than applying smoke ventilator and intake ventilation equipment independently. The proposed measure through this study shall be considered from architectural plan as one of ways for blocking from smoke spread to the central corridor in the central corridor type of intelligent building. In addition, flaws on regulation shall be established and supplemented.
아파트를 포함한 공동주택에는 거주공간과 옥외공간을 연결하는 완충공간으로서 전망이나 휴식 등의 목적으로 건축물 외벽에 접하여 부가적으로 설치되는 공간인 발코니가 있는데, 국토교통부장관이 정하는 기준에 적합한 발코니는 필요에 따라 거실·침실·창고 등의 용도로 사용할 수 있다. 이에 아파트 입주자들은 더 넓은 거주공간을 확보하기 위해 발코니를 확장하여 사용하고 있는데, 이를 위해서는 국토교통부고시 제2012-745호 ‘발코니 등의 구조변경절차 및 설치기준’에 따라 별도의 대피공간을 설치하여야 한다.<br> 그러나, 아파트 대피공간의 출입구에는 차염성능 만을 지닌 갑종방화문을 설치토록 하여 화재시 재실자가 대피공간으로 피난하여 머무르는 경우 갑종방화문의 복사열 및 누설되는 고온 공기의 영향으로 인명안전이 확보되지 못하여 화재안전성을 확보하지 못할 수 있다.<br> 이에 본 연구에서는 아파트 대피공간에 대한 목업 시험체를 제작하여 화재안전성을 평가하여 관련 제도의 개선을 위한 기초자료를 제시하고자 하였다.