This study aimed to examine relationships of water and dietary fiber intake with various health-related factors using data from the 2016~2019 Korea National Health and Nutrition Examination Survey (KNHANES). A total of 8,419 adults aged 19~49 years were categorized into four groups: (1) sufficient intake of both water and fiber (Type 1) (n=2,235), (2) water deficiency with sufficient fiber (Type 2) (n=1,470), (3) fiber deficiency with sufficient water (Type 3) (n=1,031), and (4) deficiency in both water and fiber (Type 4) (n=3,683). General characteristics, body composition, health behaviors, dietary habits, nutrient and food intake, and dietary quality were compared. Type 4 had more female (p=0.028), older adults (p<0.001), and higher socioeconomic status (p<0.001) than Type 1. Type 1 consumed breakfast more frequently (p<0.001). Nutrition label recognition, usage of nutrition label, and all nutrient intakes were the highest in Type 1 but the lowest in Type 4. Type 1 also had better dietary variety score and nutritional quality. These findings highlight the importance of adequate water and fiber intake for balanced nutrition and suggest that targeted nutrition education is needed, especially for male and low-income groups with insufficient intake.
본 연구에서는 열유도상분리법으로 제조한 polyvinylidene fluoride (PVDF) 중공사막의 오염성과 화학적 세척에 대한 실험을 진행하였다. 오염수는 소 혈청 단백질(bovine serum albumin, BSA)과 카올린(kaolin)을 이용해 제조하였으며, 차아 염소산나트륨(NaOCl), 구연산(citric acid), 황산(H2SO4)으로 화학적 세척을 진행한 후 뒤 표면 전하 분석기, 주사전자현미경 (scanning electron microscope, SEM) 그리고 에너지 분산 X선 분광법(energy dispersive X-ray spectroscopy, EDX)을 통해 세 척 효율을 평가하였다. PVDF 분리막은 높은 내화학성과 열적 안정성을 가지는 분리막으로 화학적 세척을 진행한 결과 가장 좋은 효율은 차아염소산나트륨으로 세척한 것으로 그 결과 투과도는 793.2 L/(m2.h.bar)로 초기 투과량인 945.3 L/(m2.h.bar) 값과 비교하였을 때 약 84% 회복률을 보여주었다. 이는 수처리 공정에서의 막 오염 방지 및 세척의 중요성을 제시한다.
탄소 섬유 강화 플라스틱(CFRP) 복합재는 높은 인장 강도, 강성, 내식성 및 경량 특성으로 인해 콘크리트 부재의 내부 보강 재로 점점 더 선호되고 있다. 그러나 많은 구조물들이 수명 동안 부식성 환경에 노출되어 CFRP 복합재의 내구성을 저해할 수 있다. 본 연구에서는 ASTM D7705 표준의 가속 시험 프로토콜에 따라 CFRP 그리드를 60°C의 알칼리 및 산성 용액에 침지하여 가혹한 환 경에 노출시켰다. 실험은 인장 시험, 무게 변화 분석. 및 주사 전자 현미경(SEM)을 포함하여 재료의 열화를 평가하였다. 실험 결과, CFRP 그리드는 알칼리 환경보다 산성 환경에서 더 우수한 저항성을 나타냈다. 알칼리 환경에서는 수지 열화의 영향을 크게 받았으나, 산성 환경에서는 180일 동안 약 1.58%의 인장 강도 감소만을 보였다.
중대재해처벌법 시행 이후에도 고소작업에서의 추락 사고는 여전히 높은 비율로 발생하 고 있으며, 이로 인한 사망 사고는 기업경영의 리스크로 작용하고 있다. 추락재해를 예방 하기 위해 안전대를 착용하도록 하고 있는데 안전대를 거는 수평 생명줄의 적절한 설치와 처짐 길이를 고려하지 않을 경우 작업자의 생명에 직접적인 위협이 될 수 있다. 본 연구는 섬유로프를 이용한 수평 생명줄의 처짐 길이를 실험적으로 분석하고, 이를 바탕으로 고소 작업 시 안전한 고정점 높이를 제시하는 데 목적을 두었다. 연구에서는 폴리프로필렌(P.P) 및 폴리에틸렌(P.E) 로프를 사용하여 하중을 가한 상태에서 로프의 처짐 길이를 측정하고, 그 결과를 바탕으로 고정점 높이를 산출하였다. 실험 결과, 로프의 규격에 따라 처짐 길이 가 상이하게 나타났으며, 고정점 높이를 설정할 때 이를 충분히 고려해야만 안전한 작업 환경이 조성될 수 있음을 확인하였다. 본 연구는 ESG(환경, 사회, 지배구조) 관점에서 기업의 안전 관리 중요성을 제시하고 수평 생명줄의 처짐으로 인한 사고 예방을 강화하기 위한 방안을 제언하였다. 연구 결과를 활용하여 고소작업에서의 추락 사고 예방을 위한 실질적인 지침을 제공하고 기업의 안전 관리를 강화하는데 기여할 것으로 기대한다.
Tunnel fires have significant social and economic impacts, causing extensive damage to concrete and steel reinforcements at high temperatures. Despite international advancements in fire-resistant designs, the safety measures for tunnel fires in South Korea remain insufficient. This study aimed to evaluate the fire resistance of fiber-reinforced concrete incorporating fire-resistant fibers with a focus on preventing spalling and enhancing structural safety. These findings are expected to contribute to the development of fire-resistant tunnel-design standards. Concrete mixtures with compressive strengths of 27 MPa were prepared according to highway construction material standards. Fiberreinforced concrete samples were produced with fire-resistant fiber dosages of 0.0, 0.6, 0.8, and 1.0 kg per cubic meter. Fresh concrete tests, including air content (KS F 2421) and slump (KS F 2402) tests, were conducted along with compressive strength tests (KS F 2405) on the hardened concrete. The fire resistance was assessed using an electric furnace to simulate the fire curve conditions specified in the Road Tunnel Fire Safety Guidelines based on KS F 2257. Increasing the fiber content led to a slight reduction in slump, likely owing to fiber agglomeration, with minimal effect on workability within the tested range. The air content exhibited negligible variation, indicating that there was no major impact on the air-void system. The compressive strength before the fire resistance test fluctuated but consistently met the design target of 27 MPa. The compressive strength after the fire resistance test across all samples decreased to approximately 2.0 MPa. The fiber-reinforced concrete exhibited reduced internal temperatures compared to the control, which was attributed to heat transfer disruption and the formation of micropores by the fibers. In this study, fiber-reinforced concrete demonstrated improved thermal resistance under fire conditions with minimal impact on the workability and air content within the tested range. Although the compressive strength before the fire resistance test remained adequate, the sharp decline in the post-fire strength highlights the need for further optimization. These findings emphasize the potential of fiber-reinforced concrete as a cost-effective solution for enhancing tunnel fire resistance, thereby supporting the development of safer and more resilient infrastructures.
Carbon fibers (CFs) with different tensile moduli of 280–384 GPa were applied to investigate the relationship between crystalline structure and compressive failure. The carbon chemical structure and crystalline structure were studied by Raman, highresolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The correlation between compressive strength and crystalline structure was investigated. The results showed that the transition point between medium and high tensile modulus was around 310 GPa, and within the range of medium modulus, the compressive strength of CFs improved with the increase of tensile modulus, and the compressive strength also improved with the increase of crystal thickness Lc, crystal width La, and crystal plane orientation; In the high modulus range, the correlation law was opposite, which was mainly influenced by the grain boundary structure. CFs with tensile modulus lower than 310 GPa exhibited bucking and kinking fracture under compressive loading, while shear fracture was observed for CFs with tensile modulus higher than 310 GPa.
For metal-free carbocatalysts, heteroatom doping and hierarchically porous structure are the significant factors to improve their catalytic performances. Herein, N-, P-co-doped hierarchically porous carbon fiber (NPC–2–800) was prepared by pyrolyzing bamboo pulp in combination with ( NH4)2HPO4 and activator K2CO3. It was found that ( NH4)2HPO4 not only provides N and P atoms, but also significantly affect the morphology and pore structure of the porous carbon. An appropriate dosage of ( NH4)2HPO4 facilitates the formation of hierarchically porous carbon fiber in NPC-2–800. Whereas, the carbon fragments with only micropores were obtained in absence of ( NH4)2HPO4. The hierarchical porosity and the co-doping of N and P atoms in the NPC-2–800 contribute to its outstanding catalytic performances in the 4-Nitrophenol (4-NP) reduction assisted by NaBH4. The NPC-2–800 exhibits an attractive turnover frequency (TOF) value of 4.29 × 10– 4 mmol mg− 1 min− 1, a low activation energy (Ea) of 24.76 kJ/mol, and an acceptable recyclability for 7 cycles without obvious decrease in activity. Kinetics analyses suggest that the 4-NP reduction proceeds through the Langmuir–Hinshelwood model. In addition, the NPC-2–800 can also efficiently catalyze the 2-NP and 3-NP reduction. Moreover, in the real water body, the NPC-2–800 also showed superior catalytic activity to catalyze 4-NP reduction. This study provides an efficient catalyst for pollutant conversion and elimination as well as guidelines for designing versatile carbon-based catalysts.
The mechanical performance of SiC/SiC composites is significantly influenced by the architecture of fiber reinforcement. Among the various fabrication methods, the nano-powder infiltration transition/eutectic (NITE) process is a promising technique that is capable of achieving a dense and stoichiometric SiC matrix. The reinforcement architecture, such as cross-ply (CP) or woven prepreg (WP), is determined during the preform stage of the NITE process, which is crucial in determining the mechanical properties of SiC/SiC composites. In this study, the tensile test and double notch shear (DNS) test were conducted using NITE-SiC/SiC composites to investigate the effect of the fiber reinforcing architecture on the fracture mechanism of SiC/SiC composites. The tensile strength and maximum shear strength of both CP and WP specimens were nearly identical. However, other mechanical properties, particularly those of CP specimens, exhibited significant variability. A comparison of fracture surfaces and load-displacement curve analyses from the DNS tests revealed that the cross points of the longitudinal or transverse fibers act as obstacles to both deformation and crack propagation. These obstacles were found to be more densely distributed in WP specimens than in CP specimens. The variability observed in the mechanical properties of CP specimens is likely due to size effects caused by the sparser distribution of these obstacles compared to the WP specimens.
본 논문에서는 초기 압축 성형 공정 조건들이 단섬유 강화 복합소재 구조물의 기계적 거동 특성에 미치는 영향을 효과적으로 반영 할 수 있는 압축 성형-구조 연계 해석 방안을 제안하였다. 압축 성형 해석을 바탕으로 초기 charge의 형상 및 배치에 따른 부위별 단섬 유 배향 특성을 분석하였으며, 평균장 균질화 이론을 통해 단섬유 배향 특성에 따른 등가 이방 물성을 도출하였다. 나아가, 단섬유 배 향 정보가 Mapping된 유한요소 모델을 기반으로 초기 공정 조건들에 의해 야기되는 부위별 거동 특성 변화를 고려할 수 있는 압축 성 형-구조 연계 해석을 진행하였다. 관련 수치 예제 검증을 통해 제시된 해석 방안은 압축 성형을 통해 제작된 단섬유 강화 복합소재 구 조물 설계 과정에서 효과적인 솔루션을 제공함을 확인하였다.
본 논문에서는 3D 프린팅 공정을 통해 제작된 단섬유 강화 복합소재 구조물의 기계적 거동을 효과적으로 예측하기 위한 AM 공정 연계 구조 해석 기법을 제안하였다. 복합소재 3D 프린터(Mark Two, Markforged)를 활용하여 다양한 노즐 경로를 갖는 인장 시편을 출력하였으며, 출력물에 대한 인장 시험을 진행하였다. 또한, 노즐 경로에 따른 부위별 이방 물성을 도출하기 위해 실험적 데이터를 기반으로 역공학 기법을 적용하였다. 제안된 AM 공정 연계 구조 해석 방안의 타당성을 검증하기 위해 실험 결과와의 비교/분석을 병 행하였으며, 부위별 이방 물성이 반영된 FE 모델을 바탕으로 AM 공정 연계 구조 해석을 수행함으로써 복합소재 3D 프린팅 출력물의 거동 양상을 정확하게 예측할 수 있음을 확인하였다.
본 연구는 RC(철근콘크리트) 기둥과 FRP 콘크리트 기둥의 압축성능을 P-M 상관도를 통해 비교, 분석하였으며, 특히 콘크리 트 압축강도, 보강비, FRP의 탄성계수 변화에 따른 기둥의 거동 특성을 분석하였다. 연구 결과, 고강도 콘크리트(40MPa 이상) 사용 시 FRP 보강 기둥의 성능이 RC 기둥을 상회하며, 균형파괴점이 압축영역으로 이동하여 안정성이 향상됨을 확인하였다. 보강비는 0.010∼ 0.015 범위에서 최적 성능을 발휘하며, 과도한 보강은 오히려 취성파괴 위험을 증가시킬 수 있음을 확인하였다. FRP 물성 선택에 있어 낮은 파괴변형률과 적절한 탄성계수를 가진 재료를 사용하여 균형파괴점을 압축영역에 위치시키는 것이 중요함을 제시하였다. 본 연구 는 FRP 보강 기둥 설계 시 콘크리트 강도, 보강비, FRP 물성을 종합적으로 고려하여 압축성능을 최적화하고 안정성을 확보할 수 있는 방안을 제시하였다. 이러한 결과는 FRP 보강 콘크리트 기둥의 효과적인 설계 및 성능 향상에 기여할 것으로 기대된다.
The addition of fiber sto concrete matrix has been a norm to enhance the mechanical strength of concrete. However, the use ot synthetic fibers (artificial fibers) is rampant compared to natural fibers due to a low mechanical strength of some natural fibers. The study added cellulose fiber made from jute at 0.2%, 0.25, and 0.3% of cement weight to concrete matrix to determine their influence on the early strength development. It was observed that compressive strength and flexural strength increases as the proportion of fiber added to the concrete increased. Further observation showed that the compressive strength had its optimum point at 0.3% fiber addition. However, the optimum point of the flexural strength lied at 0.25% fiber addition. It was concluded that cellulose fiber is capable of enhancing the mechanical strengths of concrete matrix.
도로터널의 연장과 대형화로 인해 화재 발생 시 터널 구조물의 안전확보가 중요한 과제가 되고 있다. 터널에서 화재가 발생할 경우, 콘크리트 라이닝이 고온에 노출되면서 강도저하 및 폭렬에 의한 구조적 손상을 초래할 수 있으며, 이를 방지하기 위해 다양한 내화공 법이 연구되고 있다. 이 연구에서는 폭렬을 억제하기 위한 내화공법으로 고온 노출에 따른 섬유혼입콘크리트의 온도전이 특성에 대한 실험적 연구를 수행하였다. 온도전이 특성 실험은 200×200×200mm 크기의 큐브 형태의 시험체에 0.6, 0.8, 1.0kg/m3의 섬유를 혼입하여 시험체를 제작하였다. 섬유혼입콘크리트 내부온도를 측정하기 위하여 표면에서부터 20mm 간격으로 100mm까지 총 6개의 K타입 열전 대를 설치하였고, 전기 내화로를 사용하여 RWS 화재곡선을 모사하여 시험체를 가열하였다. 실험결과, 섬유를 혼입한 콘크리트는 섬유 를 혼입하지 않은 Control 변수에 비해 내부온도가 낮아지는 경향을 보였다. 이는 고온에서 내화섬유가 용융되면서 콘크리트 내부의 수증기압을 감소시켜 효과적으로 억제된 것으로 보인다. 특히 내화섬유 0.8kg/m3을 혼입한 경우 60mm 이상에서 효과적으로 콘크리트 내부 온도 상승을 억제한 것으로 나타났으며, 폭렬에 의한 구조적 손상을 방지하기 위한 적정 수준의 내화섬유 혼입량은 필요할 것으 로 판단된다. 그러나 많은 양의 섬유 혼입은 고온에 따른 섬유 용융으로 인해 내부에 다량의 공극이 형성되어 폭렬 억제에는 효과적 일 수 있으나, 다량으로 형성된 공극에 따른 온도 확산이 더 빠르게 진행되어 적절한 피복두께 확보가 필요할 것으로 판단된다. 따라 서 도로터널 내화 지침(국토교통부, 2021)의 콘크리트(380℃) 및 철근(250℃)의 한계온도 이내를 만족하기 위해서는 피복두께는 최소 100mm 이상을 확보해야 할 것으로 판단된다. 이는 터널 구조물의 내화성능을 개선하기 위한 기준을 제시하며, 향후 도로터널의 안전 성을 강화하기 위해 섬유혼입량과 철근 피복두께 간의 상관관계에 대한 추가적인 실험 및 해석적 검토가 필요할 것으로 판단된다.