본 연구에서는 유럽 양송이 자원들을 SSR marker를 통 해 유전적 다양성과 집단 구조, 유전적 분화에 대하여 분석하였다. 본 연구에서 유럽의 양송이 자원들은 유전적 거리기반의 4개의 그룹으로 나뉘었고 집단구조 분석을 통하여 2개의 subpopulation으로 이루어져 있었다. 본 연구에서 사용한 SSR 마커로 유럽의 양송이 자원들은 지리적 그리고 갓색으로 구분되지 않았다. 유전적 다양성은 유전적 거리기반의 그룹에서는 Group 4, 집단구조 분석을 통한 subpopulation에서는 Pop. 2의 다양성이 높았다. 그리고 양송이 자원들은 유전적 분화가 매우 낮았다. 본 연구의 결과는 차후 양송이의 육종 등에 이용 할 수 있을 것이다.
본 연구에서는 한국에서 개발한 23개의 양송이 품종과 42개의 도입품종의 유전적 다양성과 집단 구조를 SSR 마커를 이용하여 분석하였다. 양송이 품종의 NA는 약 13, HO는 약 0.59, HE는 약 0.74, PIC값은 약 0.71 이었다. 양송이 품종은 군집분석에 의하여 3개의 Group으로 구분되 었고 다양한 국가의 품종으로 구성된 Group2의 다양성이 높았으며, 구조분석에 의하여 2개의 subpopulation으로 구분되었고, 품종의 수가 많은 Pop2의 다양성이 높았다. 한국의 양송이 품종들은 주로 Group 3에 분포하고, subpopulation 간 분포에는 큰 차이를 보이지 않았다. 본 연구의 결과는 양송이의 육종소재의 개발, 다양성 확보 등과 같은 품종의 개발과정에 이용될 수 있을 것이다.
Wikstroemia ganpi grow the southern coastal regions in Korea, small population and are classified as a critically endangered species. The majority of habitats are located near forest paths and reservoirs at the edge of mountains, indicating that there is considerable human interference and severe fragmentation of populations, as well as damage to individuals as a result of forest fires and soil erosion. We evaluated the genetic diversity in populations, genetic differentiation between populations, and genetic structure to provide data to support the conservation of W. ganpi. W. ganpi populations showed lower genetic diversity(mean level: P.95=36%, S.I=0.170, h=0.113) and higher genetic differentiation(40%) between populations than other species with similar characteristics did. And the among population gene flow(Nm) was highly restricted at 0.87. The four populations revealed that there were fixed alleles in the different loci of each population. This result can be explained by the effects of genetic drift. Structure analysis and the PCA results were more indicative of separate groups than a genetic structure that was linked to populations. This reflects the high level of genetic differentiation between populations and the unique alleles within each population. As a result, lower genetic diversity and higher genetic differentiation between populations of W. ganpi. And the effects of inbreeding were observed, as well as asexual reproduction in some populations. Therefore, to conserve W. ganpi, all the surveyed populations need to be designated for on-site conservation and monitored continually. A research on the spatial genetic structure needs to be conducted to obtain information on sample extraction for off-site conservation. This structure would be able to minimize the wasting of samples that could be obtained from limited genetic resources and would enable further focused and efficient management.
Brachymystax lenok tsinlingensis (family Salmonidae), cold freshwater fish, is endemic to Asia. This species is currently distributed throughout Russia, Mongolia, China and the Korean Peninsula. B. lenok tsinlingensis in South Korea was severely affected by anthropogenic activities such as habitat destruction, agricultural run-off and water pollution, and hence this fish has recently been dramatically decreased in its population sizes and become now critically endangered. To recover the number of individuals of B. lenok tsinlingensis, stocking or translocation programs have been conducted continuously by local governments since 1970s. However, these programs made little effort to clarify populations that may have originated from stocked, translocated or introduced fish. An understanding of genetic characteristics of endangered populations is critical to develop effective conservation and restoration plans especially because genetic diversity ensues their future fate. Therefore, we assessed the “conservation status” of this species by estimating the level of genetic diversity and genetic structure among ten geographic populations including restored populations via reinforcement and supplementation. Also, we aimed to trace the genetic origins of the newly translocated population (Chiak) through a restoration practice program. Moreover, we inferred the phylogenetic relationships among Korean lenok populations as well as across the Northeast Asia. Two hundred eighteen individuals of B. lenok tsinlingensis were sampled from ten localities (Yanggu, Injae, Seorak, Bangtae and Hongcheon: North Han River basin; Pyeongchang, Chiak and Jeongseon: South Han River basin; Taebaek and Bonghwa: Nakdong River basin in South Korea). Based on mitochondrial DNA (mtDNA) control region and eight nuclear microsatellite loci, we found extremely low levels of within-population genetic diversity, which suggests small effective population sizes (Ne) within populations. For mtDNA control region, each population housed one, or at most, two haplotypes that are restricted to the respective localities, meaning that these ‘genetically unique’ lineages will be lost permanently if the local populations undergo extinction. The overall values of haplotype diversity (h) and nucleotide diversity (π) for the entire Korean population were 0.703 ± 0.024 and 0.021 ± 0.010, respectively. In the case of microsatellites, average number of alleles across the eight loci for the entire population was 9.1 and allelic richness (AR) per population ranged from 2.375 to 4.144 (mean = 3.104). The values of observed heterozygosity (HO) and expected heterozygosity (HE) were similar to each other [HO: 0.400 ~ 0.590 (mean = 0.518); HE: 0.407 ~ 0.608 (mean = 0.504)]. The inbreeding coefficient (FIS) values were generally low, ranging from 0.048 to 0.279. Consequently, the majority of the populations (except Yanggu and Pyeongchang) were not significantly deviated from Hardy-Weinberg equilibrium (HWE), suggesting random mating at these loci tested. In addition, we found that Korean lenok populations were significantly genetically isolated from each other, with private mtDNA haplotypes and microsatellite alleles, indicating limited gene flow among populations, strong effects of genetic drift due to small Ne, or a combination of both. The Mantel test of microsatellites revealed a significant correlation (r = 0.414, P = 0.04) between genetic and geographic distances for pairwise comparisons among the ten populations, while that of mtDNA showed a lack of correlation. Given the shared identical mtDNA haplotype and similar microsatellite allelic distributions between Chiak and Hongcheon populations, we suggest that the restored (introduced) Chiak population would be inferred to be genetically originated from Hongcheon population. Phylogenetic relationships among Northeast Asian populations showed that South Korean lineages have more recently diverged from China (Yellow River), than between North Korea and Russia. Although the phylogenetic relationship would be expected to be associated with geography, South-North Korea and China populations with a similar latitude was more phylogenetically closely related. These findings may suggest a possible scenario for the historical movements of B. lenok tsinlingensis in Northeast Asia during Last Glacial Maximum (LGM). It would be supported by the line of evidence that most lenok populations migrated to southward from Northern Asia such as Russia and Mongolia during LGM because the Korean Peninsula was landlocked as inland epoch and functioned as a southern shelter with Yellow River. For this reason, the Korean Peninsula is suggested to be an important geographical region for better understanding phylogenetic relationships and evolutionary histories of B. lenok tsinlingensis across the Northeast Asia. Despite large efforts made to develop several restoration programs in South Korea for B. lenok tsinlingensis, it is still unknown whether these past restoration efforts were successful or fruitless, mainly because of little attention paid to post-restoration monitoring research. Hence, there was a lack of their published official records. In the future, conservation and restoration projects of the Korean lenok populations should consider the genetic data for a better understanding of their ecological and evolutionary trajectories. And finally, we hope that our findings here can help inform on the future effective conservation and restoration plans for B. lenok tsinlingensis populatio ns in South Korea.
Sesame is queen of oil seed crops and widely cultivated in Asia and Africa. The aim of this study was to develop a mini sub core set representing the diverse germplasm of sesame and to assess the genetic diversity, population structure and phylogenetic relationship of the resulted sub core set to be used in whole genome resequencing platform. One hundred twelve accessions out of 277 accessions were selected by the PowerCore program. A total of 155 alleles were captured from the 158 alleles detected in the primary core population, and rare alleles and specific alleles were also maintained in the sub core set accessions representing almost 100% of the primary core population. Among the sub core set accessions, four sub populations were observed with some admixture accessions. Although the genetic diversity of Pop-1 which includes most accessions from Korea is relatively lower than that of other three sub populations, it can maintain maximum number of accessions in the sub core set with the same percentage as in the primary core set probably because of the specific features of these accessions. Based on this framework of genetically defined populations, the effective use and conservation management of Sesamum indicum for crop improvement might be possible.
본 연구는 한국 희귀종인 한란의 보전을 위하여 ISSR 표지자를 이용한 유전변이와 분화 및 공간적 유전구조를 분석하였다. 분석된 유전다양성(Species level: h=0.303, S.I=0.389)은 근연종과 다른 희귀 종에 비해 높은 유전변이를 나타내었다. 또한 유전자형 다양성(Species level: GN/N=0.884, D=0.996) 역시 높게 나타나 주로 타가수정이 이루어지는 것으로 조사되었다. 한편, 소집단 A와 B 간에 분화정도 는 23%로 소집단 간의 인접거리를 고려했을 때, 집단 내에서도 분포의 위치에 따라 분화가 발생하고 있었다. 높은 수준의 유전다양성과 분화의 발생요인을 고려했을 때, 과거 외부에서 지속적으로 유입된 한란 개체로부터의 영향과 매개충의 역할이 주요한 원인으로 추정되었다. 소집단의 공간적 유전구조 분 석에서 A는 9m, B는 6m 이내에 분포하는 개체들 간에 유전적 유사성이 높은 것으로 나타났다. 이 결 과를 바탕으로 한란의 현지 외 보전을 위한 표본 추출 시 최소 9m 이상의 간격을 유지하는 것을 제안 하는 바이다.
In crop breeding program, information about genetic dissimilarity on breeding resources is very important to corroborate genealogical relationships and to predict the most heterozygotic hybrid combinations and inbred breeding. This study aimed to evaluate the genetic variation in Kenyan sunflower breeding lines based on simple sequence repeat (SSR). A total of 83 alleles were detected at 32 SSR loci. The allele number per locus ranged from 2 to 7 with an average of 2.7 alleles per locus detected from the 24 sunflower accessions and the average value of polymorphic information contents (PIC) were 0.384. A cluster analysis based on the genetic similarity coefficients was conducted and the 24 sunflower breeding resources were classified into three groups. The principal coordinates (PCoA) revealed 34% and 13.38% respectively, and 47.38% of total variation. It was found that the genetic diversity within the Kenyan sunflower breeding resources was narrower than that in other sunflower germplasm resources, suggesting the importance and feasibility of introducing elite genotypes from different origins for selection of breeding lines with broader genetic base in Kenyan sunflower breeding program.
We collected 32 maize inbred lines from eastern cereal and oilseed research center in Canada to develop new maize varieties. We also evaluated genetic diversity, genetic relationships, and population structure using 35 SSR markers. A total of 269 alleles were revealed in 35 loci with an average of 7.69 and a range between 3 and 15 alleles per locus. The genetic diversity values varied from 0.176 to 0.889 with an average of 0.691. The polymorphic information content varied from 0.171 to 0.879 with an average of 0.659. Population structure analysis indicated that 32 Canadian maize inbred lines comprised four major groups and one admixed group based on a membership probability threshold of 0.80. The four major groups contained 13, 2, 5 and 2 maize inbred lines, respectively. From genetic relationships analysis, the all inbred lines were divided into three main groups at 26% genetic similarity. Group I included 22 inbred lines, and Group II included 9 inbred lines. Group III consist of only one inbred line. The results in this study would be useful for the improvement and development of new cultivars, planning crosses for hybrids or development of inbred line in maize breeding program
Understanding the genetic variation among landrace collections is important for crop improvement and utilization of valuable genetic resources. The present study was carried out to analyse the genetic diversity and associated population structure of 621 foxtail millet accessions of Korean landraces using 22 EST-SSR markers. A total of 121 alleles were detected from all accessions with an average of 5.5 alleles per microsatellite locus. The average values of gene diversity, polymorphism information content, and expected heterozygosity were 0.518, 0.594, and 0.034, respectively. Following the unweighted neighbor-joining method with arithmetic mean based clustering using binary data of polymorphic markers, the genotypes were grouped into 3 clusters, and population structure analysis also separated into 3 populations. Principal coordinate analysis (PCoA) explained a variation of 13.88% and 10.99% by first and second coordinates, respectively. However, in PCoA analysis, clear population-level clusters could not be found. This pattern of distribution might be the result of gene flow via germplasm exchanges in nearby regions. The results indicate that these Korean landraces of foxtail millet exhibit a moderate level of diversity. This study demonstrated that molecular marker strategies could contribute to a better understanding of the genetic structure in foxtail millet germplasm, and provides potentially useful information for developing conservation and breeding strategies.
Assessing genetic diversity, population structure, and linkage disequilibrium is important in identifying potential parental lines for breeding programs. In this study, we assessed the genetic and phenotypic variation of 174 normal maize (Zea mays) inbred lines and made association analyses with respect to nine agronomical traits, using 150 simple sequence repeats (SSR). From population structure analysis, the lines were divided into three groups. Association analysis was done with a mixed linear model and a general linear model. Twenty one marker-trait associations involving 19 SSR markers were observed using the mixed model, with a significance level of P<0.01. All of these associations, as well as 120 additional marker-trait associations involving 77 SSR markers, were observed with the general model. Two significant marker-trait associations (SMTAs) were detected at P ≤ 0.0001. In the mixed linear model, one locus was associated with water content, two loci were associated with 100-kernel weight, setted ear length, ear thickness and stem thickness; three loci were associated with ear height, four loci were associated with total kernel weight and five loci were associated with plant height. These results should prove useful to breeders in the selection of parental lines and markers.