검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인삼은 반음지성 식물로 해가림을 위해 지붕 및 벽에 해가림막 시설이 필요하다. 하지만 해마다 강해지는 강풍이나 태풍으로 인해 많은 농가시설물이 피해를 입고 있으며, 특히 인삼재배시설의 경우 시설물이 길게 하나로 연결되어 있어 피해가 크다. 이러한 피해를 방지하기 위해서는 인삼재배시설에 가해지는 풍하중을 평가하여 그것에 견딜 수 있도록 내풍설계를 해야 한다. 이 연구에서는 관행식과 후주연결식 인삼재배시설의 구조골조에 대한 풍하중을 산정하기 위해 필요한 지붕 및 벽 해가림막의 순압력계수를 풍동실험을 통해 정량적으로 평가하였다. 이 연구결과는 인삼재배시설에 대한 내풍설계의 기초자료가 될 것이다.
        4,000원
        2.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인삼은 반음지성 식물로 해가림을 위한 해가림막 시설이 필요하다. 하지만 해마다 강해지는 강풍이나 태풍으로 인해 많은 시설물이 피해를 입고 있으며, 특히 인삼재배시설의 경우 시설물이 연결되어 하나의 단지를 이루고 있어 피해가 크다. 해가림막은 차광을 위한 것이지만 바람이 투과하는 재질로 이루어진 것도 있어 강풍에 의해 바람이 투과 하는지 아닌지를 판단할 필요가 있다. 따라서 본 연구에서는 인삼재배시설의 대표적인 두 가지의 설치유형(관행식, 후 주연결식)을 고려하여 모형을 재현하였다. 그리고 먼저 열선풍속계를 이용하여 투과실험을 선행한 후 다점풍압계를 이용하여 본 실험을 수행하여 인삼재배시설의 골조용 풍압분포 특성을 규명하였다. 실험 결과는 인삼재배시설의 설치유형에 따라 하방향 순압력계수와 상방향 순압력계수로 나누어 그래프로 정리하였다.
        4,000원
        3.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        Background: The growth process of ginseng seedlings is very important in producing good quality ginseng. This study was carried out to investigate the effects of different microclimates on the growth characteristics of ginseng seedlings in a multi-layer bed facility. Methods and Results: Ginseng seedlings were cultivated in a three-layer bed facility. The air temperatures on the first and second floors were similar, while that on the third floor was about 1 - 4℃ higher than that on the other floors. The vapor pressure deficit (VPD) was higher inside than on the outside of the facility, and that on third floor was the highest in the multi-layer bed system. The photosynthetic rate, chlorophyll fluorescence, and growth characteristics of ginseng seedlings did not significantly differ among the three floors. The yield of ginseng seedlings was the highest at 721 g/1.62 ㎡ on the first floor Conclusions: It was found that microclimate plays an important role in growing ginseng seedlings in multi-layer bed facilities, and therefore proper environmental control is important. In addition, producing ginseng seedlings using multi-layer bed facilities is a technology that is expected to provide a way to overcome climate change and stabilize ginseng production.
        4.
        2018.05 서비스 종료(열람 제한)
        Background : Multi-stage system were used for development of stable ginseng seedling production. Bed-soil for the production of ginseng seedling in the multi-stage was similar to the conventional bed-soil but the weight of the bed-soil was high and the efficiency of operation in the multi-stage was lowered. In this study, the yield and quality of ginseng seedling was investigated by commercial lightweight bed-soil in the multi-stage facilities, and the possibility of application of lightweight bed-soil. Methods and Results : This study was carried out by a 3-stage cultivation bed using a 50 ㎜ sandwich panel in a house shaded with 85% light-shielding net. The width of the cultivating bed was 90 ㎝, the height was 30 ㎝, and the height of each stage was 50 ㎝. In the first and second stages, the amount of light was insufficient, so two rows of fluorescent lamps were installed and the third stage was used natural light. Ginseng seeds were sown on the cultivating bed in November 2016, and ginseng seeds (native species) were sown with a density of 3 × 3 ㎝. The chemical properties of lightweight bed-soil were pH 5.11, and EC 0.76 dS/m. It was suitable for ginseng seedling cultivation. The bulk density was 0.21 Mg/㎥. Among the growth characteristics of the ginseng seedlings, the root length was the longest as 17.0 ㎝ in the conventional cultivation, and the second stage was the longest at 14.8 ㎝ in the multi-stage facility. The root diameter in the multi-stage system was 0.2 - 0.4 ㎜ thicker than the conventional one. Root weights of lightweight bed-soil were similar to those of conventional cultivation. The yield of ginseng seedlings in the 1 st, 2 nd and 3 rd stage was 721.3 g, 692.0 g, and 394.7 g/1.62 ㎡ respectively. Conclusion : In the production of ginseng seedling using multi-stage facilities, the commercial bed-soil was better than the conventional bed-soil (light, workability). The differences in yields in the multi-stage facilities can be overcome if the growth management such as moisture management is more systematic. If we develop the technology to reuse the bed-soil after harvesting the ginseng seedling, it will be economical and able to supply to farmers.
        5.
        2016.10 서비스 종료(열람 제한)
        Background : The production of healthy ginseng seedling is a critical part of growing 5-6-year-old fresh ginseng. Recently, for the problem of replant failure, it becomes more and more difficult to find first planted field for ginseng seedling cultivation. In this situation, This study was conducted to examine the possibility of seedling production practices of ginseng by utilizing the multi-beds cultivation system as a way to produce ginseng seedling stably. Methods and Results : This experiment was conducted by installing a 3-layed cultivation beds using 50㎜ sandwich panels. As the 1st and 2nd beds get insufficient amount of light, fluorescent lights were installed in 2 rows to further lighten up. And the 3rd bed used natural light. The bed soil used was formulated by mixing saprolite, yakto and peat moss. The control was cultivated under natural light on 1-layed bed with commercial bed soil for ginseng seedling. The commercial bed soil had pH 7.24, higher than the standard of permission, 6.5; and its calcium and sodium contents were 10.7, and 0.85 cmol+/㎏, respectively, higher than the standard. The available phosphate concentration was 34.0㎎/㎏, lower than the appropriate level of 100 ㎎/㎏. The mixing bed soil also had pH 7.69, higher than the standard but its nitrate and phosphate were within the appropriate range. The intra-facility light quantities of the 1st and 2nd beds were constant at around 100 μmol during days. But the light quantity of the 3rd bed was 51.4 μmol in average daily value. The roots of the 1st-3rd beds were found to weigh 0.58 – 0.73 g while those of the control group, about 0.47g to show heavier root weight of the multi-beds cultivation ginseng than that of the control. As for the yield, the control showed 145 ㎏/10a whereas the 1st-3rd beds showed higher levels between 183 – 228 ㎏/10a. Conclusion : In the multi-beds cultivation of ginseng seedling, fluorescent lamps seem to have provided sufficient light as an artificial light source. The soil for ginseng seedling production is different from ginseng cultivation field soil, additional study will be also necessary to set up the physiochemical range of bed soil for ginseng seedling.
        6.
        2016.05 서비스 종료(열람 제한)
        Background : Root diseases caused by Cylindrocarpon destructans and Fusarium solani decrease the yield and quality of ginseng. Cylindrocarpon root rot is a major disease caused by replanting failure in ginseng garden. Methods and Results : Solarization was done in the infested soil of the greenhouse for summer season (from July 24 to Autumn 31, 2014) after putting green manure (Sudan grass) and calcium cyanamide (CC) into the soil. Mycelium and conidia of C. destructans died at 4 0℃ after 15 hours, and 45℃ after 5 h, but it did not die at 35℃ after 15 h. Those of C. destructans died after keeping it for 2 hours daily at 40℃ for 9 days, and 45℃ for 8 days, but did not die at 38℃ for 9 days. Maximum soil temperature was 55.4℃ in 5 cm depth, 48.7℃ in 10 cm, 44.7℃ in 15 cm, 42.5℃ in 20 cm, and 31.9℃ in 30 cm by putting green manure into the soil and solarization. Reduction of sudan grass increased electrical conductivity (EC), organic matter, P2O5, K, and Mg, while decreased pH, NO3-N, and Na. Addition of calcium cyanamide and urea gave a negative effect on the growth of ginseng because EC and NO3-N were increased excessively than the optimal range. Solarization using green manure mixed with CC was the most effective in decreasing soil-borne pathogens of 2-year-old ginseng. But the root disease that occurred between single treatment of sudan grass and the treatment mixed with calcium cyanamide showed not a significant different. Addition of calcium cyanamide showed the decrease of root weight because leaves were dead early by a excessive increase of EC and NO3-N. Conclusion: Soil disinfection using green manure and solarization in greenhouse was effective in inhibiting root rot, however, it did not completely kill the soil-borne pathogens.
        7.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        Background: Root diseases caused by Cylindrocarpon destructans and Fusarium solani decrease the yield and quality of ginseng. Cylindrocarpon root rot is a major disease caused by replant failure in ginseng fields. Methods and Results: Solarization of infested greenhouse soil was carried out during the summer season after applying green manure (Sudan grass) and Calcium Cyanamide (CC) on the soil. Mycelium and conidia of C. destructans died at 40℃ after 15 h, but they did not die at 35℃ after 15 h. They also died after keeping the soil at 40℃ for 2 h daily for 9 days, and at 45℃ for 8 days, but they did not die at 38℃ for 9 days. Maximum soil temperature was 55.4℃ at 5 ㎝ depth, 48.7℃ at 10 ㎝, 44.7℃ at 15 ㎝, 42.5℃ at 20 ㎝, and 31.9℃ at 30 ㎝ by incorporating green manure into the soil and using solarization. Solarization using green manure mixed with CC was the most effective in decreasing soil-borne pathogens of 2-year-old ginseng. However, the addition of CC decreased the root weight due to the increase in EC and NO3-N. Conclusions: Soil disinfection using green manure and solarization in a greenhouse environment was effective in inhibiting root rot, however, it did not completely kill the soil-borne pathogens.