The intensive development of the petrochemical industry globally reflects the necessity of an efficient approach for oily sludge and wastewater. Hence, for the first time, the current study utilized magnetic waxy diesel sludge (MWOPS) to synthesize activated carbon coated with TiO2 particles for the removal of total petroleum hydrocarbons (TPH) and COD from oily petroleum wastewater (OPW). The photocatalyst was characterized using CHNOS, elemental analysis was performed using X-ray fluorescence spectroscopy (XRF), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FTIR), Raman, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), MAP thermo-gravimetric analysis/ differential thermo-gravimetric (TGA–DTG), Brunauer–Emmett–Teller (BET), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The optimization of synthesized highly porous AC/Fe3O4/TiO2 photocatalyst was conducted considering the impacts of pH, temperature, photocatalyst dosage, and UVA6W exposure time. The results demonstrated the high capacity of the MWOPS with inherent magnetic potential and desired carbon content for the removal of 91% and 93% of TPH and COD, respectively. The optimum conditions for the OPW treatment were obtained at pH 6.5, photocatalyst dosage of 250 mg, temperature of 35 °C, and UVA6W exposure time of 67.5 min. Moreover, the isotherm/kinetic modeling illustrated simultaneous physisorption and chemisorption on heterogeneous and multilayer surfaces. Notably, the adsorption efficiency of the AC/Fe3O4/TiO2 decreased by 4% after five adsorption/desorption cycles. Accordingly, the application of a well-designed pioneering photocatalyst from the MWOPS provides a cost-effective approach for industry manufacturers for oily wastewater treatment.
청정 연료인 수소를 생산하기 위해 현재 가장 널리 사용되는 기술인 증기 개질이다. 이 방법으로 생산된 수소는 일산화탄소와 같은 불순물을 함유하고 있어, 이를 연료전지와 같은 응용분야에 사용하기 위해서는 적절한 정제 과정을 반드 시 거쳐야 한다. 최근 효과적인 정제 방법으로 분리막 기술이 각광받고 있다. 본 연구에서는 수소와 일산화탄소 혼합가스에서 수소 분리 및 회수를 위해 바이오가스 고질화용(biogas upgrading) 상용 폴리설폰(polysulfone) 고분자막의 활용 가능성에 대 해서 평가하였다. 먼저, 사용한 상용막의 물리화학적 특성에 대해서 평가하였고, H2/CO를 이용하여 stage-cut, 운전압력과 같 은 다양한 조건에서의 상용막 모듈의 성능 평가를 진행하였다. 마지막으로, 평가 결과를 바탕으로 공정설계를 위한 시뮬레이 션을 진행하였다. 본 연구에서의 상용 분리막 공정의 최대 H2 투과도와 H2/CO 분리계수는 각각 361 GPU와 20.6을 기록하였 다. 또한, CO 제거 효율은 최대 94%를 나타내었으며, 생산 수소 농도는 최대 99.1%를 달성하였다.
Pt/C catalysts were prepared using black carbon (CB), and evaluated for their potential application as a catalyst of liquid-phase catalystic exchange for tritium treatment. CB was treated with 10% H2O2 solution for 0 and 2 hours at 105°C, Ethylene glycol and 40wt% Pt were added to the dried treated sample to prepare a Pt/C catalyst. The physical and chemical properties of the prepared catalysts were evaluated by BET, XRD, elemental analysis (EA), and TEM analyses. As a result of BET analysis, the surface area of CB without 10% H2O2 was 237.2 m2·g-1, and after treatment with 10% H2O2, it decreased to 181.2 m2·g-1 for 2 hours. However, the internal surface area increased, indicating the possibility that more Pt could be distributed inside the CB treated with 10% H2O2. In the XRD analysis results, the presence of Pt was confirmed by observing the Pt peak in the prepared Pt/C catalyst, and it was also observed through TEM analysis that Pt was evenly distributed within the CB. The elemental analysis (EA) results showed that the ratio of S and N decreased and the ratio of O increased with increasing 10% H2O2 treatment time. The H2O2 treated carbon supported Pt catalysts and polytetrafluoroethylene were then loaded together on a foamed nickel carrier to obtain hydrophobic catalysts. Our hydrophobic Pt catalyst using H2O2 treated black carbon are expected to be usefully used in the tritium treatment system.
This study evaluated a potential sterilization process that uses calcium hypochlorite (Ca(ClO)2) as a disinfectant and hydrogen peroxide (H2O2) as a neutralizing agent for monoculture processes of microalgae (Nannochloropsis oculata). The results showed that no contaminants (prokaryote) were present when the Ca(ClO)2 concentration was greater than 0.010%. The use of an equivalent amount of H2O2 completely neutralized Ca(ClO)2 and had an additional bactericidal effect because of the formation of singlet oxygen. No substantial difference was observed in the biomass accumulation and chlorophyll contents compared to those in cultures sterilized using conventional physical methods such as autoclaving. Therefore, chemical sterilization using Ca(ClO)2 and H2O2 has an excellent economic advantage, and we expect the proposed ecofriendly chemical sterilization method to become a critical culture technology for microalgae-related industrialization.
본 연구에서는 중공사형 지지체막을 폴리술폰(polysulfone, PSf) 고분자를 이용하여 비용매 상분리법(non solvent induced phase separation, NIPS)에 의해 제조하였다. 제조된 중공사 지지체막을 PDMS와 Pebax를 코팅하여 중공사형 복합막 을 제조하고 CO2, H2, O2 그리고 N2에 대한 순수 투과도(permeance)와 선택도를 측정하였다. 제조된 복합막 모듈 중에서 선 택도(CO2/H2)가 가장 높은 모듈을 선정하여 모사가스를 사용하여 스테이지컷(stage cut, SC)의 변화에 따라 분리성능을 측정 하였다. 이때 사용된 모사가스는 PSA에서 버려지는 off gas의 농도인 CO2 70% : H2 30%인 것을 사용하였다. 1단 실험에서 는 H2 농도 약 60%, H2 회수율 12%의 값을 얻을 수 있었다. 낮은 H2 농도와 회수율을 극복하기 위해 2단 직렬 테스트를 수 행하였으며, 이를 통해 H2 농도 약 70%, H2 회수율 70%를 달성할 수 있었으며, 이를 통해 CO2/H2 분리에 대하여 분리 공정 구성을 도출할 수 있었다.
산화적 스트레스는 세포 및 조직 손상을 통해 피부의 탄력 및 보습 기능 저하, 피부 노화 촉진 을 비롯한 다양한 피부질환을 일으킨다. 본 연구의 목적은 인간 피부각질세포 (HaCaT keratinocyte)에서 산화적 스트레스에 대한 붉은 토끼풀 추출물의 효능을 검토하여, 피부에 효과적으로 사용할 수 있는 기능 성 소재로서의 활용 여부를 확인하고자 하였다. 본 연구에서는 붉은 토끼풀 추출물이 인간 피부각질세포에 서 산화적 스트레스에 따른 세포사를 억제시키는 것을 확인하여, 이를 조절하는 보호기전을 규명하였다. 이는 붉은 토끼풀 추출물이 Caspase-3 비활성, 세포사 촉진단백질 Bax 발현 억제, 세포생존 촉진단백질 Bcl-2 발현 증가 및 MAPK 신호전달계 단백질의 인산화 억제를 통해 H2O2에 의해 유도된 산화적 스트레 스를 보호할 수 있다는 것을 확인하였다. 따라서 붉은 토끼풀 추출물은 피부의 산화적 손상을 감소시키는 유용한 소재로 평가되며, 이는 피부보호 및 미용을 위한 다양한 제품 및 산업에 활용 가능성이 높은 것으로 판단된다.
Among efforts to improve techniques for the chemical vapor deposition of large-area and high-quality graphene films on transition metal substrates, being able to reliably transfer these atomistic membranes onto the desired substrate is a critical step for various practical uses, such as graphene-based electronic and photonic devices. However, the most used approach, the wet etching transfer process based on the complete etching of metal substrates, remains a great challenge. This is mainly due to the inevitable damage to the graphene, unintentional contamination of the graphene layer, and increased production cost and time. Here, we report the systematic study of an H2 bubbling-assisted transfer technique for graphene films grown on Cu foils, which is nondestructive not only to the graphene film but also to the Cu substrate. Also, we demonstrate the origin of the graphene film tearing phenomenon induced by this H2 bubbling-assisted transfer process. This study reveals that inherent features are produced by rolling Cu foil, which cause a saw-like corrugation in the poly(methyl methacrylate) (PMMA)/graphene stack when it is transferred onto the target substrate after the Cu foil is dissolved. During the PMMA removal stage, the graphene tearing mainly appears at the apexes of the corrugated PMMA/graphene stack, due to weak adhesion to the target substrate. To address this, we have developed a modified heat-press-assisted transfer technique that has much better control of both tearing and the formation of residues in the transferred graphene films.
대용량 화학 및 청정에너지의 운반체인 수소는 석유화학 산업 및 연료전지 등에서 많이 활용되는 중요한 산업용 기체이다. 특히 수소는 주로 증기개질 및 가스화를 통해 화석 연료에서 생성되며 부산물로 이산화탄소가 발생한다. 따라서 고 순도 수소를 얻기 위해서는 이산화탄소를 제거해야 한다. 본 총설에서는 배러 단위[1 Barrer = 10−10 cm3 (STP) × cm / (cm2 × s × cmHg)]로 보고된 이산화탄소로부터 수소를 분리하는 프리스탠딩 고분자 분리막 및 혼합매질 분리막에 초점을 맞추었 다. 최근 보고된 다양한 논문들을 분석하여 분리막의 구조, 형태, 상호 작용 및 제조 방법에 대해 논의하고 구조-물성 관계를 이해하여 향후 더 나은 분리막 소재를 찾는 데 도움이 되고자 한다. 다양한 분리막의 성능 및 특성 검토를 통해 수소/이산화 탄소 분리에 대한 Robeson 성능 한계선을 제시하고, 가교, 혼합 및 열처리 등의 기술을 사용하여 분리 특성을 개선하는 다양 한 혼합매질 분리막에 대해 논의하였다.