정수슬러지를 탄화 및 활성처리하여 흡착제를 제조하였으며, 이를 이용한 황화수소 흡착특성을 고찰하였다. 제조 된 흡착제에 대한 BET측정 및 SEM 등 물성분석을 실시하였으며, 황화수소를 대상으로 회분식의 흡착평형실험 을 실시하였다. 실험변수로는 활성처리시 적용되는 약품종류 및 농도 등이 적용되었다. 실험결과, 정수슬러지는 탄화나 약품첨착과정을 통해 커다란 성능 향상이 이뤄짐을 알 수 있었다.
H2S adsorption characteristics of adsorbent made by coffee waste were investigated. For analyses of the manufactured adsorbent, various methods such as scanning electron microscope(SEM), measurements of BET(Brunauer Emmett Teller) surface area, pH, and Iodide adsorption were adopted. As major adsorption characteristics, adsorption equilibrium capacity was measured by using a batch type experimental apparatus for operating variables such as adsorption temperature(25~45℃), adsorbent types. The experimental result showed that the H2S adsorption equilibrium capacity of adsorbent made by coffee waste much more increases with steam activation for the coffee waste.
H2S adsorption characteristics of adsorbent made by fallen leaves were investigated. For analyses of the manufactured adsorbent, various methods such as scanning electron microscope(SEM) and measurements of BET surface area were adopted. As major adsorption characteristics, adsorption equilibrium capacity was measured by using a batch type experimental apparatus for operating variables such as adsorption temperature(25~45℃) and adsorbent types. The experimental result showed that the H2S adsorption equilibrium capacity of adsorbent made by fallen leaves decreased with increasing adsorption temperature due to physical adsorption phenomena. It was also found that the H2S adsorption capacity of the adsorbent increased remarkably by an acid treatment with HCl solution.
The impregnated activated carbons were prepared by the incipient wetness method with the contents of KIO3 varied from 1.0~10 wt% as the impregnation material. The specific surface area and micropore volume of the rice hulls activated carbon were 2,600~2,800 m2/g and 1.1~1.4 cc/g, respectively. With increasing the contents of impregnation materials, the surface area and micropore volume decreased by 3~21%. However, The amounts of hydrogen sulfide adsorbed increased by 2.1~2.8 times depending on the impregnation content. The optimum contents of KIO3 were 2.4 wt%. Although the breakthrough time and adsorption capacity of hydrogen sulfide decreased with increasing temperature in the case of the unimpregnated activated carbons, they increased by 1.2~ 3.2 times for the case of the impregnated activated carbons. The optimum aspect ratio(L/D) was 1.0 and the adsorption amount of hydrogen sulfide enhanced with increasing the gas flow rate. The regeneration temperature was determined as 400℃ from the TGA experiment. The adsorption capacity of hydrogen sulfide with the impregnated activated carbon decreased gradually as the regeneration continued. The hydrogen sulfide adsorption amount of the regenerated activated carbon up to 4 times was still higher than that of the unimpregnated activated carbon.
Activated carbons with high surface area of 2,600 m2/g and high pore volume of 1.2 cc/g could be prepared by KOH activation of rice hulls at a KOH:char ratio of 4:1 and 850℃. In order to increase the adsorption capacity of hydrogen sulfide, which is one of the major malodorous component in the waste water treatment process, various contents of Na2CO3 and KIO3 were impregnated to the rice-hull activated carbon. The impregnated activated carbon with 5 wt.% of Na2CO3 showed improved H2S adsorption capacity of 75 mg/g which is twice of that for the activated carbon without impregnation and the impregnated activated carbon with 2.4 wt.% of KIO3 showed even higher H2S adsorption capacity of 97 mg/g. The improvement of H2S adsorption capacity by the introduction of those chemicals could be due to the H2S oxidation and chemical reaction with impregnated materials in addition to the physical adsorption of activated carbon.
산업의 발전과 경제규모의 팽창에 따라 에너지소비가 크게 증가되는 가운데 대기오염물질배출이 크게 늘어나면서 심각한 환경문제를 야기하고 있다. 이중에서 황화수소(H2S)는 계란 썩는 냄새가 나는 무색의 유독한 기체로서 인체의 위장이나 폐에 흡수되어 질식, 폐 질환, 신경중추마비 등을 발생시키고 있다. H2S 가스는 폐기물 매립장, 석유 정제업, 펄프공업, 도시가스 제조업, 암모니아공업, 하수처리장 등 다양한 곳에서 발생하고 있으며, 이를 처리하기 위하여 심냉법, 흡수법, 막분리법, 흡착법 등 여러 가지 처리방법이 제시되었다. 본 연구에서는 실험실규모의 장치를 이용하여 바이오매스 부산물을 활용한 악취저감용 흡착소재개발을 위해 밤껍질을 대상으로 탄화, 스팀활성처리등의 과정을 거쳐 흡착제를 제조하였으며, BET분석, SEM등을 이용한 물성분석, 회분식의 흡착평형실험, 악취 모니터링실험을 통한 흡착특성을 고찰하였다. 실험결과, 밤껍질을 활용하여 탄화 및 활성처리과정을 거치면서 얻을 수 있는 흡착제의 수율은 15∼20%에 해당되는 것으로 밝혀졌다. 또한, 밤껍질부산물은 스팀을 이용한 활성처리 과정에서 온도가 증가할수록. 시간이 증가할수록 스팀-탄소 화학반응에 의해 내부기공이 커지면서 비표면적이 증가되는 것으로 밝혀졌다. 아울러, 밤껍질부산물을 소재로한 흡착제의 황화수소 평형흡착능과 파과성능은 활성탄대비 비교적 우수한 성능을 보임으로써, 악취제거용 흡착소재로 활용성이 클 것으로 예상되었다.
H2S adsorption characteristics of adsorbent made by coffee waste were investigated. The manufacturing method of adsorbent is to activate the coffee waste with steam after carbonization of dried coffee waste. For analyses of the manufactured adsorbent, various methods such as scanning electron microscope (SEM), measurements of BET(Brunauer Emmett Teller) surface area, pH, and Iodide adsorption were adopted. As major adsorption characteristics, adsorption equilibrium capacity was measured by using a batch type experimental apparatus for operating variables such as adsorption temperature (25~45℃), adsorbent types. The experimental result showed that the H2S adsorption equilibrium capacity of adsorbent made by coffee waste much more increases with steam activation for the coffee waste.