검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The latest weight reduction research of automotive industry and technology was improved. In this paper, we aim to evaluate the composite frame to manufacture the floor assembly of commercial vehicle. The design of subframe incorporated into the floor module was determined by FEM(Finite Element Method) simulation. The mechanical properties used for the simulations were obtained from the tests for samples of glass fiber/epoxy composites. We made two kinds of pultrusion products, one was aluminum profile, the other was unidirectional composites with aluminum profile. Based on the results from the simulation and bending test, the design of the subframe was finally determined prior to adoption of the commercial vehicle floor.
        4,000원
        2.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A valve open/close degree measuring device is used for an indicator of a valve actuator. This device indicates an opening and closing of a valve or throttle in a hydraulic actuator. In ship, equipments requires safe and robust because of a rough environment and a specific condition during a voyage. Thus, the open/close degree measuring device must be developed which can be used at an outdoor environment. This study developed the open/close degree measuring device using a volumetric measuring method(25㎖/100㎖). The housing of the open/close degree measuring device was made by a stainless steel with surface painting after an anodizing coating.
        4,000원
        3.
        2020.03 KCI 등재 서비스 종료(열람 제한)
        This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.
        4.
        2016.05 KCI 등재 서비스 종료(열람 제한)
        An electro-hydraulic actuator (EHA) is widely used in industrial motion systems and the increasing bandwidth of EHA position control is important issue. The model-inverse feedforward controller is known to extend the bandwidth of system. When the system has non-minimum phase (NMP) zeros, direct model inversion makes system unstable. To overcome this problem, an approximate model-inverse method is used. A representative approximate model inversion method is zero phase error tracking control (ZPETC). However, if zeros locate right half plane of z-plane, the approximate inverse model amplifies the high-frequency response. In this paper, to solve the problem of ZPETC, an adaptive model-inverse control is proposed. The adaptive algorithm updates feedforward term in real-time. The effectiveness of the proposed adaptive model-inverse position control strategy is verified by comparison with typical proportional-integral (PI) control and feedforward control by experiments. As a result, the proposed adaptive controller extends the bandwidth of EHA position control.
        5.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        In order to achieve a force controller with high performance, an accurate torque servo is required. However, the precise torque servo for a double vane rotary actuator system has not been developed till now, due to many nonlinear characteristics and system parameter variations. In this paper, the torque servo structure for the double vane rotary actuator system is proposed based on the torque model. Nonlinear equations are set up using dynamics of the double vane rotary hydraulic actuator system. Then, to derive the torque model, the nonlinear equations are linearized using a taylor series expansion. Both effectiveness and performance of the design of torque servo are verified by torque servo experiments and applying the suggested torque model to an impedance controller.