The purpose of this study is to develop and apply an oil leak detector using a capacitive sensor to detect oil leak in hydraulic equipment. The developed oil leak detector consists of a sensor and a sensing circuit. The sensor is designed using the difference in the permittivity of air and oil to change the capacitance, and the sensing circuit is composed of a charge amplifier and rectifier circuit. The sensing device is made of a PCB module to output the DC analog signal. In this study, this oil detector was installed in a cyclic pressure tester for evaluating valve life and was applied to detect the leakage of the test valve. It can also be applied to detecting the oil leakage of various hydraulic types of equipment and reduce maintenance costs by preventing large leakage of hydraulic oil.
In the power steering systems used for automobiles, because of its small size and low noise, a balanced type hydraulic vane pump is mainly used as a power source. Therefore it is requested to research on the lubrication characteristics of a oil hydraulic vane pump which is the key part to improve its performance. The performance of a oil hydraulic vane pump is influenced by the lubrication characteristics of the critical sliding components. Thus, lubrication characteristics between the shaft and the journal bearing have to be researched for the design and the performance improvement of a oil hydraulic vane pump. Therefore, in this paper, it is theoretically investigated that the lubrication characteristics between the shaft and the journal bearing of a balanced type oil hydraulic vane pump for power steering systems. The results demonstrate that lubrication characteristics are significantly influenced by the clearance between the shaft and the journal bearing.
A hydraulic system is a driving or transmission system that uses high pressure hydraulic fluid to power hydraulic machinery. It refers to the transfer of energy from flow and pressure. A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. Cavitation is the formation of vapor cavities in liquid that are the consequence of forces acting upon the liquid. It usually occurs when a liquid is subjected to rapid changes of pressure that cause the formation of cavities where the pressure is relatively low. In this study, a cavitation was measured when the vane pump is rotating. The rotation speed of the vane pump was tested at 1000 rpm to 5000 rpm. At that time, the temperature and pressure of each hydraulic oil were changed and controlled. The results show that flow rate and noise are changed when cavitation occurs.
A hydraulic system is a drive or transmission system that uses high pressure hydraulic fluid to power hydraulic machinery. It refers to the transfer of energy from flow and pressure. A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. Cavitation is the formation of vapor cavities in a liquid that are the consequence of forces acting upon the liquid. It usually occurs when a liquid is subjected to rapid changes of pressure that cause the formation of cavities where the pressure is relatively low. In this study, a cavitation was measured when the vane pump is rotating. The rotation speed of the vane pump was tested at 1000 rpm to 5000 rpm. At that time, the temperature and pressure of each hydraulic oil were changed and controlled. The results show that flow rate and noise are changed when cavitation occurred.
Numerical analysis has been carried out to investigate thermal characteristics for hydraulic system. Overall performance of hydraulic system is largely influenced by oil flow field with heat transfer. Especially thermal characteristics for operating conditions with high oil temperature caused by heavy load and continuous operation are dominant. Oil temperature variation with time in the system is predicted for various flow conditions. Local fluid flow fields at the pipelines, valves, and oil pump in the hydraulic system are considered with thermodynamic and transport properties such as density and viscosity. These results in the study can be applied to the optimal design of hydraulic system.
Experimental analysis has been carried out to investigate oil temperature control characteristics of the hydraulic system in a special vehicle. Hydraulic system performance is largely affected by oil temperature, and there are considerable malfunctions in the system for high temperature conditions caused by heavy load and continuous operation. Oil pressure in the hydraulic system decreases with oil temperature, and its variation rate becomes less steep as oil temperature increases. There is severe time delay for oil temperature control due to the operation of heat exchanger system, and it depends on the oil flow rate and pressure in the system. These results in this study can be applied to the design of automatic thermal control system in the special vehicle hydraulic system.
본 연구의 결과를 요약하면 다음과 같다. (1) 유압 펌프, 유량조절 밸브(오리피스)등을 주된 구성 요소로 하는 구조가 간단하고, 운전.관리가 용이한 유압식 풍력.열 변환 장치를 개발하였다. (2) 실험 결과로부터 본 장치의 에너지 변환 효율이 매우 높음을 확인하였다. (3) 출력 에너지가 열 에너지이므로 온수 탱크를 사용하여 쉽게 에너지를 저장할 수 있음을 실험적으로 확인하였다. (4) 본 장치는 대량 생산되는 유압 부품들만을 사용하여 구성이 가능하므로 매우 저렴한 가격으로, 신뢰성이 우수한 장치를 제작할 수 있다
유압관로에서의 캐비테이션 발생 기구를 조사할 목적으로, 과도흐름에 수반하여 발생하는 캐비테이션 초생에 관한 실험 및 압력이 급강하 할 때의 기포 성장에 대한 계산을 행하였다. 실험에서 얻은 결과를 기초로 한 계산에서, 작동유가 절대압 영이하의 부압에 노출되어도 캐비테이션이 발생하지 않을 정도의 장력을 갖기 위해서는 소위 말하는 기포(기포 주위의 액체가 연속체로 간주될 수 있을 정도의 크기를 갖는 기포)가 유중에 존재할 가능성은 거의 없음이 입증되었다.