The national natural monument of Korea, Jeju Black Cattle (JBC), it is a native species with unique blood line. This cattle breed needs mass production and industrialization to further improve and preserve their characteristics. This study was to examine whether there were differences in in vitro developmental rates according to body weight (<300, 300 ~ 350, 350 ~ 400 and >400 kg) and grade (1++, 1+, 1, 2 and 3), and oocyte donors or non-donors. As a method of IVM, groups of ten cumulus oocyte complexes (COCs) were cultured in 50 μl droplets of maturation medium (TCM199 supplemented with 10% FBS, 0.2 mM sodium pyruvate, 1 μg/ml follicle-stimulating hormone, 1 μg/ml estradiol-17β) under mineral oil at 38.8℃ in an incubator with a 5% CO2 atmosphere for 22 to 24 h. For IVF, 44 ul IVF drop contained 10 oocytes with sperm concentration of 1 × 106 cells/ml, and then 2 μl heparin and 2 μl PHE (20 μM peicillamine, 10 μM hypotaurine, 2 μM epinephrine) were added. For IVC, after 44±2 h of incubation, cleaved embryos were incubated in CR1aa medium containing 3 mg/ml FAF-BSA until day 4 at 38.8℃ in a 5% CO2 incubator. Embryos were then cultured in CR1aa medium containing 10% FBS until day 8. As a result, in vitro development rates were the highest in 350 ~ 400 kg body weight group and in 1++ grade group than other groups (p<0.05). However, there was no difference in in vitro developmental capacity of classified donor and non-donor oocyte groups. This result demonstrated that the better in vitro developmental capacity was obtained in high level originated oocyte groups (350 ~ 400kg, 1++ grade) than in others, while there was no different in donor types.
The purpose of this experiment was to compare the pregnancy rate (PR) according to the state of the ovaries and uterus, according to the number of embryos transferred from cows and heifers and to investigate the method of artificial twin induction with Hanwoo in vitro fertilized (IVF) embryos by embryo transfer (ET). Looking at the PR according to the condition of the ovaries and uterus, the result was not influenced by the condition of the ovaries, but was significantly influenced by the state of the uterus. The PR according to the number of embryos transferred from cows was 36.8%, 53.0%, 50.5% for 1, 2, and 3 embryos, respectively and although there was a higher frequency of twin calves with 3 embryos than 2, the calving rate was the highest with 2 embryos. In case of heifers, the transfer of 1 embryo showed the best pregnancy and calving rate, and although the PR was similar with 2 embryos (67.7 versus 66.4), in case of 2 embryos transferred there was high frequency of embryonic loss (6.1%) occurred when a cow was diagnosed at 28 and 53 d after ET, total loss (21.3%); sum of fetal death, abortion and stillbirth after pregnant diagnosis at 60 day.
Cathepsin B, a lysosomal cystein protease that plays an important role in the degradation of intracellular proteins in lysosomes, is detected in a wide variety of cells including bovine oocytes and embryos. Although the mode of action of cathepsin B is not fully understood, a strong relationship was observed between cathepsin B and apoptosis in many types of cells. Cathepsin B was found to induce the apoptotic pathway through activating initiator caspases rather than executioner caspases. Thus, the aim of this study was evaluated the effect of capthesin B inhibitor, E-64, on blastocyst developmental competence and subsequent preimplantation quality of the IVF and SCNT bovine embryos. After IVF and SCNT procedures, presumptive bovine embryos were cultured in CR1aa medium supplemented with E-64 for 24 h. Then, samples were additionally cultured in CR1aa medium without E-64 for 5 days. In our results, the frequency of blastocyst formation was higher when treated with E-64 compared with the control group (p<0.05). Furthermore, the blastocyst cell number was enhanced and apoptosis reduced (TUNELpositive nuclei number) by E-64 treatment in both IVF and SCNT bovine embryos (p<0.05). In the real-time quantitative RT-PCR, the expression of anti-apoptotic Bcl-xL gene was shown to be increased in the blastocyst stage, whereas expression of proapoptotic Bax was decreased. In conclusion, our results indicate that E-64 improves the developmental competence and embryonic qualities of bovine IVF and SCNT embryos by modulating cathepsin B induced apoptosis during the preimplantation stage.
The purpose of this experiment is to compare the pregnancy rate (PR) according to the state of the ovaries and uterus, according to the number of embryos transferred from cows and heifers and to investigate the method of artificial twin induction with Hanwoo in vitro fertilized (IVF) embryos by embryo transfer (ET). Looking at the PR according to the condition of the ovaries and uterus, the result was not influenced by the condition of the ovaries, but was significantly influenced by the state of the uterus. The PR according to the number of embryos transferred from cows was 36.8%, 53.0%, 50.5% for 1, 2, and 3 embryos respectively, and although there was a higher frequency of twin calves with 3 embryos than with 2, the calving rate was the highest with 2 embryos. In case of heifers, the transfer of 1 embryo showed the best pregnancy and calving rate, and although the PR was similar with 2 embryos (67.7 versus 66.4), in case of 2 embryos transferred there was high frequency of embryonic loss( 6.1%) occurred when a cow was diagnosed at 28 and 53 d after ET, total loss (21.3%; sum of fetal death, abortion and stillbirth after pregnant diagnosis at 60 day).
In this study, we aimed to determine whether the evaluated markers of cell death could be found at particular developmental stages of normal porcine in vitro fertilization (IVF) embryos. We investigated the characteristics of spontaneous and induced apoptosis during preimplantation development stages of porcine IVF embryos. In experiment 1, to induce apoptosis of porcine IVF embryos, porcine IVF embryos at 22h post insemination were treated at different concentration of actinomycin D (0, 5, 50 and 500 ng/ml in NCSU medium). Treated embryos were incubated at in 5% , 5% for 8h, and then washed to NCSU medium and incubated until blastocyst (BL) stage. We examined cleavage rate at 2days and BL development rate at 7days after in vitro culture. A significantly lower rate of cleavage was found in the 500 ng/ml group compared to others (500 ng/ml vs. 0, 5, 50 ng/ml; 27.8 % vs. 50.0%, 41.2%, 35.9%), and BL formation rate in 500 ng/ml was lower than that of others (500 ng/ml vs. 0, 5, 50 ng/ml; 8.0% vs. 12.6%, 11.2%, 12.6%). In experiment 2, to evaluate apoptotic cells, we conducted TUNEL assay based on morphological assessment of nuclei and on detection of specific DNA degradation under fluorescence microscope. This result showed that apoptosis is a normal event during preimplantation development in control group (0 ng/ml actinomycin D). A high number of BL derived control group contained at least one apoptotic cell. Actinomycin D treated BLs responded to the presence of apoptotic inductor by significant decrease in the average number of blastomeres and increase in the incidence of apoptotic cell death. In 500 ng/ml group, the incidence of apoptosis increased at 4-cell stage and later. This result suggested that apoptosis is a process of normal embryonic development and actinomycin D is useful tool for the apoptosis study of porcine preimplantation embryos.
This study was performed to confirm the microtubule assemblies and methylation patterns of porcine IVF and parthenogenetic embryos. Cumulus-oocyte complexes were collected and matured in vitro for 42 hr. Oocytes were fertilized by prepared fresh sperm or activated parthenogenetically by exposure to electric stimulation and 6-dimethylaminopurine. Porcine IVF and parthenogenetic embryos were cultured in vitro for 6 days. Embryos were stained by immunofluorescence staining method to observe the dynamic of nucleus and microtubules in the first mitotic phase and the methylation patterns in different developmental stages. After then, samples were confirmed and analyzed through a laser-scanning confocal microscope. IVF embryos had a centrosome originated from sperms, which was shown a ɤ-tubulin spot. However, ɤ-tubulin spot was not observed in parthenogenetic embryos. A lower methylation level was observed in IVF embryos compared to parthenogenetic ones at the morula and blastocyst stages. In conclusion, it is considered that microtubule assemblies and genetic regulation mechanism differ between parthenogenetic and IVF embryos.
This study was carried out to collect the basic data about gestation lengths and offspring's birth weights and sex ratio of the dairy recipients transferred with Hanwoo IVF embryos. Blastocysts cultured for days were transferred to 96 and 167 heads for the basic data about gestation length and offspring's birth weight and sex ratio of the dairy recipients, respectively. The gestation lengths of the dairy recipients transferred with Hanwoo IVF embryos were () and () days in male and female of the offspring, respectively. The gestation lengths of the recipients were , , and days in spring, summer, autumn and winter of the calving season, respectively, and were significantly different among the calving season (p<0.05). The birth weights of male and female calves were () and ( kg in offsprings of the dairy recipients transferred with Hanwoo IVF embryos, respectively. The sex ratio was 90.7 in the offsprings of the dairy recipients transferred with Hanwoo IVF embryos.
Somatic cells such as oviduct epithelial cell, uterine epithelial cell, cumulus-granulosa cell and buffalo rat river cell has been used to establish an effective culture system for bovine embryos produced in in vitro. But nitric oxide (NO) metabolites secreted from somatic cells were largely arrested the development of bovine in vitro matured/ in vitro fertilized (IVM/IVF) embryos, suggesting that NO was induced the embryonic toxic substance into culture medium. The objective of this study was to investigate whether BOEC co-culture system can ameliorate the NO-mediated oxidative stress in the culture of bovine IVM/IVF embryos. Therefore, we evaluated the developmental rate of bovine IVM/IVF embryos under BOEC co-culture system in the presence or absence of sodium nitroprusside (SNP), as a NO donor, and also detected the expression of growth factor (TGF-p , EGF and IGFBP) and apoptosis (Caspase-3, Bax and Bcl-2) genes. The supplement of SNP over 5 uM was strongly inhibited blastocyst development of bovine IVM/IVF embryos than in control and 1 uM SNP group (Table 2). The developmental rates beyond morulae stages of bovine IVM/IVF embryos co-cultured with BOEC regardless of SNP supplement (40.4% in 5 uM SNP+ BOEC group and 65.1% in BOEC group) were significantly increased than those of control (35.0%) and SNP single treatment group (23.3%, p<0.05: Table 3). The transcripts of Bax and Caspase-3 genes were detected in all experiment groups (1:Isolated fresh cell (IFC), 2:Primary culture cell (PCC), 3:PCC after using the embryo culture, 4: PCC containing 5 uM SNP and 5: PCC containing 5 uM SNP after using the embryo culture), but Bcl-2 gene was not detected in IFC and PCC (Fig. 1). In the expression of growth factor genes, TGF-p gene was found in all experimental groups, and EGF and IGFBP genes were not found in IFC and PCC (Fig. 2). These results indicate that BOEC co-culture system can increase the development beyond morula stages of bovine IVM/IVF embryos, possibly suggesting the alleviation of embryonic toxic substance like nitric oxide.
In vitro development of porcine embryo is affected by culture condition. One possible factor is osmolarity of culture medium. This study examined whether high osmolarity of culture medium at the early culture stage improves development of preimplantation porcine in vitro fertilization (IVF) and nuclear transfer (NT) embryos. NT and IVF embryos were divided into three groups and the basic medium was PZM-3 (250~270 mOsmol, control group). The control group of embryos was cultured in PZM-3 for whole culture period. Other two groups of embryos were cultured in a modified PZM-3 with 0.05 M sorbitol or 0.05 M sucrose (300~320 mOsmol, sorbitol or sucrose group) for the first 2 days, and then cultured in PZM-3 for further culture. NT embryos cultured in sucrose group showed a significantly higher developmental rate to the blastocyst stage with a decreased apoptosis rate compared to the sorbitol (p<0.05). For IVF, sucrose group showed a significantly increased the blastocyst formation rate with a decreased apoptosis rate compared to the control (p<0.05). This study represents that the high osmolarity in the early embryo culture stage can enhance the in vitro development of porcine NT and IVF embryos to the blastocyst stage with reduced apoptosis of cells.
Astaxanthin is a kind of carotenoid compounds, having a antioxidant and anti-inflammatory activities. The antioxidative mechanism by which carotenoid scavenge free radicals has been clearly elucidated, but has not tried for the development of mammalian preimplantation embryo. This study was conducted to investigate the antioxidative effect of astaxanthin on in vitro development of porcine in vitro fertilized embryos. Porcine embryos derived from in vitro fertilization (IVF) were cultured in 5% CO2 in air at 38.5℃ in PZM-3 medium supplemented with different dosages of astaxanthin (0, 1, 5 and 10 M) and taurine (0, 1, 2.5 and 5 mM) as a positive control, and execute to compare the effects of various antioxidants such as taurine, melatonin and asculatin on in vitro development. The proportions of embryos developed to the blastocyst stage were increased when 1 and 5 M of astaxanthin (26.6 and 23.4%, respectively) and 1 and 2.5 mM taurine (25.8 and 26.4%, respectively) were supplemented, compared to controls (p<0.05). Also, various antioxidant-treated groups were significantly higher rates of blastocysts (astaxanthin, 27.4%; taurine, 29.1%; melatonin, 26.8%; aesculetin, 27.9%, respectively ) than control (18.8%). There was no difference in mean cell number of blastocysts between antioxidants and control. This result indicates that astaxanthin has an antioxidant feature when porcine IVF embryos were cultured in vitro.
본 연구는 돼지 난포란의 vitrification 동결 시 내동제의 종류 및 농도가 생존율에 미치는 영향과 수정 후 체외발생율을 조사하고자 수행하였다. 1.0, 15, 30 및 40시간 성숙 배양시킨 난포란을 vitirfication 동결보존 후의 MII로의 발생율은 각각 였으며, diploid로의 발생율은 로서 대조군의 ME 단계의 에 비해 낮게 나타났으며 diploid 단계의 에 비해서는 높은 체외성숙율을 나타냈다. 체외발생율은 초기의 미숙 난포란일
The present study was performed to investigate the effects of in vitro maturation (IVM) and in vitro fertilization (IVF) duration on the development of Korean Native Cattle embryos. The time of blastocyst formation and the quality of blastocysts based on cell numbers were examined. The cleavage rate increased with the length of IVF duration in the groups of 18-hr IVM, but was constant in the groups of 24-hr IVM. The development rate to the 8-cell stage was significantly higher in the IVM 18: IVF 20 group than in the IVM 24: IVF 24 group. The development rate to the blastocyst stage was highest in the IVM 18: IVF 20 group, significantly different from that of the IVM 18: IVF 16, IVM 24: IVF 20 and IVM 24: IVF 24 group. The time of blastocysts formation tended to be shorter when IVM and IVF duration were decreased. The number of inner cell mass, trophoblast and the total cells were significantly higher in the IVM 18: IVF 16 group than in the IVM 24: IVF 24 group (P<0.05). These results demonstrated that the IVM and IVF duration should be adequate for the efficient production of bovine embryos, and it might particularly be essential to determine the proper combination of IVM and IVF duration.