Background: Despite considerable technological advancements, polyspermy remains a significant challenge in in vitro fertilization (IVF) procedures in pigs, disrupting normal embryonic development. Here, we aimed to determine whether optimal fertilization conditions reduce the polyspermy incidence in pigs.
Methods: In vitro -matured oocytes were co-incubated with sperm according to a modified two-step culture system.
Results: In the first experiment, oocytes were briefly co-incubated with sperm, washed in IVF medium, and then moved to fresh IVF medium for 5 or 6 h. Although the 6 h sperm-free cultured group had a higher penetration rate than the 5 h cultured group, the polyspermy rate significantly increased in the 6 h sperm-free cultured group. The gamete co-incubation period was either 20 or 40 min. The 40 min cultured group had a higher rate of blastocyst formation and number of total cells in blastocysts than the 20 min cultured group. In experiment 2, oocytes were inseminated with sperm separated by Pecroll treatment. Percoll treatment increased the rate of oocyte penetration and blastocyst formation compared to the control. In experiment 3, fertilized oocytes were cultured in 25 μL microdroplets (10 gametes/drop) or 500 μL (100 gametes/well) of culture medium in 4-well plates. The large volume of medium significantly reduced the number of dead oocytes and increased the rate of blastocyst formation compared to the small volume.
Conclusions: Collectively, these results demonstrate that various fertilization conditions, including modified co-culture period, active sperm separation, and culture medium volume, enhance fertilization efficiency and subsequent embryonic development by decreasing polyspermy occurrence.
The research work was undertaken to determine an effective fertilization medium, sperm separation method and sperm capacitating agent for optimum in vitro fertilization (IVF) rates of indigenous zebu cow oocytes. In experiment 1, tissue culture medium (TCM 199), Tyrode’s albumin lactate pyruvate (TALP) and Brackett and Oliphant (BO) medium were used as basic medium for IVF of oocytes of indigenous zebu cows. In experiment 2, three sperm separation methods namely centrifugation, swim up and percoll gradient methods were used for separation of motile and viable spermatozoa for IVF. In experiment 3, for capacitation of spermatozoa, IVF medium supplemented with the heparin, mixture of penicillamine, hypotaurine and epinephrine (PHE) or the combination of heparin with PHE were used for fertilization. In vitro culture (IVC) of presumptive zygotes was done in modified synthetic oviduct fluid (mSOF) medium using standard procedure 24 h after sperm-oocytes co-culture. The cleavage rate was determined to evaluate the efficacy of fertilization medium, sperm separation method and sperm capacitating agent 24 h after IVC. The cleavage rate was higher in oocytes fertilized in TALP (63.3%) than in TCM 199 (47.5%) (p < 0.05). The cleavage rate was higher in oocytes fertilized by spermatozoa separated by percoll gradient method (62.3%) than by centrifugation (51.6%) (p < 0.05). The cleavage rate of oocytes was higher when insemination was done with spermatozoa capacitated in TALP supplemented with heparin and PHE (61.3%) compared to control (40.9%) (p < 0.05). In conclusions, TALP based medium and percoll gradient sperm separation followed by capacitation with combination of heparin and PHE are suitable for IVF of indigenous zebu cow oocytes in Bangladesh.
The purpose of this study was to analyze whether FSH and LH hormone treatment directly or indirectly affect embryo development in embryonic development. To determine this, we compared the development of embryonic cells through the expression pattern of MMPs. As a result, 33.8% of blastocysts were formed in FSH added group, 20.8% in LH added group and 10% in FSH + LH added group. In addition, the activity of MMP-9 was highly detected in the FSH-added group, and the expression of Casp-3 was much lower than that of the other groups. These results suggest that the addition of FSH seems to increase the activity of MMP-9 in embryonic cells, and that LH, on the contrary, may activate MMP-2 activity. In addition, the expression level of MMP-2 in the FSH-added group was high in the Trophoblast cell group and in the LH-added group, the hormone ideal secretion might affect the development of the embryonic cell.
본 연구는 티모시 건초와 농후 사료 위주의 사료를 급여한 한우 씨수소 정소상체 정자 체외수정 효율 조사를 통해 정자의 활용 가능성을 조사하였다. 농후 사료는 체중의 1.8%를 급여하고 양질의 티모시 건초를 자유채식 시킨 14개월령 거세우의 정소에서 분리된 정소상체 미부의 정자를 회수하고 동결 흉해 후 체외수정을 실시한 결과는 다음과 같다. 웅성전핵과 자성전핵이 형성(2PN)된 난자는 정상수정으로, 1개의 전핵(1PN), Expanded Sperm Head (ESH), Polyspermy 형태는 비정상적인 수정의 형태로 평가하였다. 정상적으로 수정된 난자의 비율은 정소상체 정자의 경우 전체 침투율은 49.7% 그리고 정상적인 2PN을 가진 난자는 18.5%를 보였으며, 대조구 정자의 전체 침투율은 54.4%로서 정소상체 정자 보다 높은 결과를 보였으나 유의적인 차이를 보이지는 않았다. 정상적으로 2PN을 형성한 비율은 36.7%로서 정소상체 정자를 이용한 정자 보다 높았으나 유의적인 차이는 없었다. 체외수정 후 발달률 조사에서 정소 상체 정자의 분할률은 81.2%, 대조구 정자는 82.7%로 유사한 결과를 보였으나, 배반포 발달률은 정소상체 정자 24.4%와 대조구 정자 12.2%로 정소상체 정자를 사용한 난자의 발달에서는 유의적으로 높았다(p<0.05).
In this study, we examined sperm penetration and blastocyst developmental rate of oocytes to determine fertilizability of cauda epididymal spermatozoa in Hanwoo bull. One testicle with epididymides were castrated from one Hanwoo bull (14 months of age) and transported to laboratory. Spermatozoa recovered from cauda epididymis by mincing with semen extender (Optixcell, IMV, France) and cryporeserved in liquid nitrogen tank until use. As control, frozen Hanwoo semen was used. Cumulus oocyte complexes (COCs) were collected from follicles (2-8 mm) of slaughtered ovaries and 10 to15 COCs were matured in 50μl droplet with M-199 media supplemented with 10% fetal bovine serum, 10μg/ml FSH, 10μg/ml LH, 10μg/ml EGF for 22 to 24 hours in a humidified atmosphere of 5% CO2 in air. After maturation of COCs, matured COCs were co-incubated with cauda epididymal spermatozoa in 100μl droplet in modified Brackett and Oliphant media supplemented with 2.5 mM theophylline for 12 or 18 hours under 5% CO2 in air. Sperm concentration was adjusted to 5 × 106cells/ml. After IVF for 18 hours, presumptive zygotes were cultured in modified synthetic oviductal fluid with 1mM glutamine, 12 essential amino acids, 10 μg/ml insulin under 5% CO2, 5% O2 in air. In experiment 1, we examined sperm penetration rate at 12 hours of IVF of frozen-thawed epididymal sperm. Total penetration rate among cauda epididymis and control were not significantly different (mean±standard error, cauda epididymis and control vs. 49.7±11.3 and 54.4±12.8%) In experiment 2, cleavage and blastocyst development rate were evaluated at day 2 and day 8 after IVF for 18 hours. Cleavage rate among cauda epididymis and control was similar different (cauda epididymis and control vs. 81.2±3.4 and 82.7±2.5%). However, blastocyst developmental rate of cauda epididymis group was significantly higher than that of control group (cauda epididymis and control vs. 24.4±1.6 and 12.2±2.8%, p<0.05). In conclusion, cauda epididymal spermatozoa in Hanwoo bull has high fertilizability and embryo development. Cauda epididymal sperm can be used as an alternative to ejaculated frozen sperm in vitro.
Alpha-linolenic acid (ALA; n-3 18:3), a one of omega-3 fatty acid, is mainly contained in chloroplast of plant and ALA is an essential fatty acid, not synthesized in mammalian body, it must be supplied from foods. Polyspermy is especially high on in vitro fertilization (IVF) in pigs, which is a major obstacle to in vitro embryo production systems. In our previous study, when ALA was supplemented during in vitro maturation (IVM), the methaphase-II rate and gluthathione level was increased. The objective of this study was to evaluate the effects of alpha-linolenic acid (ALA) supplementation during IVM and subsequent of IVF in pigs. The cumulus-oocyte complexes (COCs) were submitted to IVM medium containing 0, 25, 50, and 100 μM ALA for 44 h. After 44 h of IVM, denuded oocytes were co-cultured with spermatozoa during 18 h. After 18 h of in vitro fertilization, oocyte were using aceto-orcein method, to evaluated penetration rate, monospermy (number of monospermy oocytes/total oocytes), and the IVF efficiency (number of monospermy/total penetrated oocytes). In results, 25 and 50 μM ALA groups were significantly increased on penetration rate compared with 100 μM ALA group (p<0.05). Similarly, monospermy rate were significantly increased 25 and 50 μM ALA groups than control group (p<0.05). IVF efficiency was no significant difference between control and ALA treatment groups. Our findings suggested that treatment of ALA supplementation during in vitro maturation (IVM) and subsequent of in vitro fertilization in pigs, ALA can increase IVF efficiency by effectively blocking polyspermy and increasing monospermy some mechanism in porcine oocytes. However, the study of mechanism by which ALA blocks polyspermy are needed, and this study suggests that ALA has a positive effect on in vitro production of porcine oocytes by decreasing polyspermy. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education) (2016R1D1A1B03931746).
The present study was aimed to determine the effects of green tea extract (GTE) and beta-mercaptoethanol (β-ME) supplementation in boar sperm freezing extender on in vitro fertilization (IVF) and reactive oxygen species (ROS) and glutathione (GSH) levels of presumptive zygotes (PZs). Experimental groups were allocated into lactose egg yolk (LEY) without antioxidant (control), GTE (1,000 mg/l in LEY) and β-ME (50 μM in LEY). In freezing, spermatozoa extended with LEY were cooled to 5°C for 3 h and then kept at 5°C for 30 min following dilution with LEY containing 9% glycerol and 1.5% Equex STM. The final sperm concentration was 1 × 108/ml. Spermatozoa were loaded into straws and frozen in nitrogen vapor for 20 min. For IVF, oocytes were matured in NCSU-23 medium and co-cultured with spermatozoa following thawing at 37°C for 25 sec. At 12 h following IVF, IVF parameters (sperm penetration and monospermy) were evaluated. In addition, GSH and ROS levels of PZs were determined by Cell Tracker Blue CMF2HC and DCHFDA, respectively. IVF parameters did not show any significant difference among the experimental groups. GSH and ROS levels of PZs were not significantly different between groups. In conclusion, antioxidant supplementation in boar sperm freezing could not influence IVF parameters, ROS and GSH levels of PZs.
The present study was conducted to investigate the effect of caffeine and theophilline on sperm motility during in vitro fertilization (IVF). Briefly, commercial boar semen was centrifuged and resuspended (5x107 sperms/ml) with fertilization medium (mTBM) supplemented with 2 mM caffeine (Caf), 5 mM theophylline (The), 2 mM caffeine + 5mM theophylline (Caf + The), and not supplemented control. The semen parameters of the four groups were analyzed by computer-assisted semen analysis (CASA, Medical Supply Co. Ltd) system at 6 h as time for IVF at 38.5 C under 5 % CO2 in air. The groups were examined 11 semen parameters such as total motility (TM), curvilinier velocity (VCL), straight-line velocity (VSL), average-path velocity (VAP), and hyperactivated (HYP), etc. A total motility of control group (41.3 %) at 6 h showed significantly (P<0.05) higher than those of other groups (Caf, 37.2; The, 35.2; Caf + The, 30.1 %). Results from many other sperm parameters indicated that the theophylline and caffeine negatively affected on sperm motility during IVF. These results suggested that the supplementation of caffeine and/or theophylline was not essential for IVF in pigs. To prove this suggestion, further studies are needed to analyze fertility and embryonic development after IVF with or without the supplementation of caffeine and/or theophylline.
(-)-Epicatechin gallate (ECG) is a polyphenol compound of green tea exhibiting biological activities, such as antioxidant and anticancer effects. To examine the effect of ECG on porcine oocytes during in vitro maturation (IVM), oocytes were treated with 0-, 5-, 15-, and 25 μM ECG. After maturation, we investigated nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels and subsequent embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF).
After 42 hours of IVM, the 5 μM group exhibited significantly increased (p< 0.05) nuclear maturation (89.8%) compared with the control group (86.1%). However, the 25 μM group observed significantly decreased (p< 0.05) nuclear maturation (83.5%). In intracellular maturation assessment the 5-, 15-, and 25 μM groups had significantly increased (p< 0.05) GSH levels and decreased ROS levels compared with the controls. The 5- and 15 μM group showed significantly increased (p< 0.05) embryo formation rates and total cell number of blastocysts after PA (18% and 68.9, 15% and 85.1 vs. 12% and 59.5, respectively) compared with controls. Although the 25 μM group observed significantly lower blastocyst formation rates after PA (27.6% vs. 23.2%) than control group, the 5 μM group showed significantly increased blastocyst formation rates after PA (37.2% vs. 23.2%) compared to the control group. Furthermore, the 5 μM group measured significantly increased blastocyst formation rates (20.7% vs. 8.6%) and total cell number after IVF (88.3±1.5 vs. 58.0±3.6) compared to the control group.
The treatment of 5 μM ECG during IVM affectively improved the porcine embryonic developmental competence by regulating intracellular oxidative stress during IVM.
Cryopreservation has been applied successfully in many mammalian species. Nevertheless, pig embryos, because of their greater susceptibility to cryoinjuries, have shown a reduced developmental competence. The aim of this study was to evaluate the survival status of vitrified-warmed porcine embryos. Forced blastocoele collapse (FBC) and non-FBC blastocysts are vitrified and concomitantly cultured in culture media which were supplemented with/without fetal bovine serum (FBS). Porcine vitrified-warmed embryos were examined in four different methods: group A, non- FBC without FBS; group B, non-FBC with FBS; group C, FBC without FBS; group D, FBC with FBS. After culture, differences in survival rates of blastocysts derived from vitrified-warmed porcine embryos were found in group A∼D (39.5 (A) vs 52.5 (B) and 54.8 (C) vs 66.7% (D), respectively, p<0.05). Reactive oxygen species (ROS) level of survived blastocysts was lower in group D than that of another groups (p<0.05). Moreover, total cell number of survived blastocysts was higher in group D than that of other groups (p<0.05). Otherwise, group D showed significantly lower number of apoptotic cells than other groups (2.0±1.5 vs 3.2±2.1, 2.8±1.9, and 2.7±1.6, respectively, p<0.05). Taken together, these results showed that FBS/FBC improves the developmental competence of vitrified porcine embryos by modulating intracellular levels of ROS and the apoptotic index during the vitrification/warming procedure. Therefore, we suggest that FBS and FBC are effective treatment techniques during the vitrification/warming procedures of porcine blastocysts.
The objective of this study was to investigate the efficiency of nicotinic acid on sperm cryosurvival and fertilization ability in frozen-thawed boar semen. Boar semen was collected by glove-hand method and was frozen using freezing solution treated to 0, 5, 10 and 20 mM of nicotinic acid. The frozen sperm for sperm characteristic analysis was thawed such as viability, acrosome reaction, and mitochondrial integrity. The frozen-thawed sperm was estimated by SYBR14/PI double staining for viability, FITC-PNA/PI double staining for acrosome reaction and Rhodamine123/PI double staining for mitochondrial integrity using a flow cytometry. The embryo was estimated in vitro development and DCFDA staining for reactive oxygen species assessment. As results, frozen-thawed sperm viability was significantly higher in 5 and 10 mM (61.1 ± 1.5%, 64.7 ± 2.0%) of nicotinic acid than other groups (0 mM, 52.1 ± 2.3%; 20 mM, 47.8 ± 5.1%, P<0.05). The live sperm with acrosome reaction was significantly higher in 5 and 10 mM of nicotinic acid (26.1 ± 1.8%, 24.9 ± 1.5%) than other groups (0 mM, 35.3 ± 0.8%; 20 mM, 36.5 ± 1.9%, P<0.05). The live sperm with mitochondrial integrity was significantly higher in 5 and 10 mM (84.2 ± 3.6%, 88.4 ± 2.3%) of nicotinic acid than other groups (0 mM, 77.3 ± 4.4%; 20 mM, 73.3 ± 3.6%, P<0.05). Blastocyst rate of in vitro development was significantly higher in 10 mM (17.0 ± 1.3%) of nicotinic acid than other groups (0 mM, 9.4 ± 0.5%; 5mM, 12.6 ± 0.8%; 20 mM, 5.0 ± 1.0%, P<0.05). Moreover, total cell number was higher in 5 and 10 mM (53.6 ± 2.9%, 57.9 ± 2.8%) of nicotinic acid than other groups (0 mM, 41.0 ± 1.4%; 20 mM, 23.2 ± 2.8%, P<0.05). Hydrogen peroxide in embryos was lower in 5 mM nicotinic acid (0.7 ± 0.1%) than other groups (0 mM, 1.0 ± 0.1%; 10mM, 0.9 ± 0.0%; 20 mM, 1.4 ± 1.0%, P<0.05). In conclusion, nicotinic acid-treated semen improves cryosurvival and quality of spermatozoa. Also, the fertilized oocytes with nicotinic acid improve quality of embryo and blastocyst formation.
K+ channels are involved in the regulation of a variety of physiological functions, including proliferation, apoptosis and differentiation, in mammalian cells. Our previous study demonstrated that the blockage of K+ channels inhibits mouse early embryonic development. This study was designed to identify the effect of K+ channels during bovine embryonic development. K+ channel blockers (tetraethylammonium (TEA), BaCl2, quinine, ruthenium red and fluoxetine) were added to the culture medium during in vitro fertilization (IVF) for 6 h to first identify the short-term effect of these chemicals. Among K+ channel blockers, fluoxetine, which is used as a selective serotonin reuptake inhibitor, significantly increased the blastocyst formation rate by approximately 6% when compared to control. During the in vitro maturation (IVM) of immature oocytes and the in vitro culture (IVC) of embryos, the oocytes and embryos were exposed to fluoxetine for either a short-term (6 h) or a long-term (24 h) to compare the embryonic development in response to exposure time. The 6 h exposure to fluoxetine during IVM did not affect the blastocyst formation rate, but the rate of blastocyst formation was reduced after the 24 h exposure. On the other hand, embryonic development increased approximately 10% in both groups of embryos exposed to fluoxetine for 6 and 24 h during IVC. Taken together, fluoxetine treatment during IVF and IVC, but not IVM, enhances bovine embryonic development. These results suggest that fluoxetine-modulated signals in oocytes and embryos could be an important factor towards enhancing bovine embryonic development.
This study examined the motility of either the unattached(upper) or attached(lower) Hanwoo sperm to bovine oviduct epithelial cell(BOEC) monolayers to determine whether there are any changes in their motility during co-culture. The cleavage and blastocyst development rate were compared among different preincubation methods in-vitro, after oocytes were fertilized in-vitro with Hanwoo sperm on BOEC monolayers. The motility of frozen-thawed sperm in BOEC co-culture group was significantly higher than controls, especially at 5 hours and 6 hours (p<0.05) of incubation, in sperm treatment medium without heparin and caffeine. The motility of frozen-thawed sperm in BOEC co-culture group was significantly higher than controls, especially at 3 hours (p<0.05) and 6 hours (p<0.01), in sperm treatment medium containing heparin and caffeine. The motility of the attached( lower) sperm was significantly higher than the unattached(upper) sperm during co-culture with BOEC at all times(p<0.01 or p<0.05), except for 6 hours. After Hanwoo oocytes were fertilized in-vitro with the sperm that had been co-cultured with BOEC in sperm treatment medium containing heparin and caffeine, we determined the cleavage and blastocyst development rate, according to the preincubation methods. Both the cleavage and blastocyst development rate from 2 hour preincubation group were the highest, but significant difference was not recognized. These results show that BOEC plays an important role on sperm hyperactivation related to capacitation regardless of heparin and caffeine in sperm treatment medium. However, oviduct epithelial cell had no significant effect on the development of embryos after in-vitro fertilization in the presence of added heparin and caffeine in sperm treatment medium.
Mammalian fertilization is a complex cascade process consisting of sperm migration through the female reproductive tract, physiological changes to sperm such as sperm capacitation and acrosome reaction, and sperm-egg interaction in the oviduct in vivo. On the other hand, in vitro fertilization (IVF) is a process by which egg cells are fertilized by sperm outside the body: in vitro. IVF has been used for a variety of purposes in reproductive biotechnology for human and animals. The discovery of sperm capacitation in 1951 promoted the development of IVF technology. In the initial stage of IVF, sperm capacitation in preincubation medium was shown to be essential to fuse with eggs. Besides, sperms should detour some of the in vivo regulations for IVF. This review introduces a general mammalian fertilization process, including sperm capacitation, removal of cumulus matrix, acrosome reaction, and sperm-egg fusion and focuses on the roles of key biochemical molecules, signal mechanisms, and genes involved during IVF and novel results of sperm-oocyte interaction elucidated in various gene-knockout mice models.
Presently, the effect of 0.5 mM dibutyryl cAMP (dbcAMP)-supplemented maturation medium during different incubation time on meiotic arrest (germinal vesicle) and resumption (metaphase II) of porcine oocytes and embryonic development of porcine oocytes following in vitro fertilization (IVF) or parthenogenetic activation (PA) was determined. Porcine cumulus oocyte complexes (COCs) were cultured in 0.5 mM dbcAMP for 17, 22, 27, or 42 h, and an additional 22 h without 0.5 mM dbcAMP. The nuclear status was examined at each time point. Oocytes cultured from 39~49 h displayed more than 80% meiotic resumption. More than 85 % of meiotic arrest was presented at 17~22 h. Oocytes were cultured for 22 h with 0.5 mM dbcAMP and additional 22 h without dbcAMP to assess developmental potential following IVF or PA. There were no significant differences in blastocyst rates among the dbcAMPIVF, IVF, dbcAMP-PA, and PA groups, although cleavage rate of IVF group was significantly higher than those of dbcAMP-PA, and PA groups. In conclusion, 0.5 mM dbcAMP influenced meiotic maturation of porcine oocytes depending on incubation time of oocyte, although embryonic development was not improved in both IVF and PA.
The present study investigated the effects of resveratrol (a phytoalexin with various pharmacological activities) during in vitro maturation (IVM) of porcine oocytes on nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels, gene expressions in matured oocytes, cumulus cells, and IVF-derived blastocysts, and subsequent embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF). In the nuclear maturation after 44 h IVM, the groups of 0.1, 0.5, and 2.0 μM (83.0%, 84.1%, and 88.3%, respectively) had no significant difference compared to the control (84.1%), but the group of 10.0 μM decreased the nuclear maturation (75.0%) significantly (p<0.05). The groups of 0.5 and 2.0 μM showed a significant (p<0.05) increase in intracellular GSH levels compared to the control and 10.0 μM groups. Intracellular ROS level of oocytes matured with 2.0 μM resveratrol was significantly (p<0.05) decreased compared to the other groups. Oocytes treated with 2.0 μM resveratrol during IVM had significantly higher blastocyst formation rate, and total cell numbers after PA (62.1% and 49.1 vs. 48.8%, and 41.4, respectively) and IVF (20.5% and 54.0 vs. 11.0% and 43.4, respectively) compared to the control group. Cumulus-oocytes complex (COCs) treated with 2.0 μM resveratrol were showed lower (p<0.05) expressions of apoptosis-related genes in both matured oocytes (Bax, Bak, and Caspase-3) and cumulus cells (Bax). In IVF-derived blastocysts derived from 2.0 μM resveratrol treated oocytes had also decreased (p<0.05) expression of Bak compared to the control. In conclusion, the 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF in porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and regulating apoptosis-related genes expression during oocyte maturation.
These study was to investigate the in vitro fertilization and viability of fresh and vitrified oocytes. Also, the developmental capacity of IVF and intracytoplasmic sperm injection (ICSI) oocytes were investigated. Then vitrification was performed with the use of 20% ethylene glycol + 20% DMSO + 0.5 M sucrose + 10% FCS + TCM-199 medium. Vitrification immature oocytes are cultured in vitrification solution for 10 min afterwards transferred to expose at room temperature for 5 min. and transferred to the ice water for 5 min. The oocytes were sealed in a 1.0 mm straw and placed in a LN2 container. Frozen oocytes were rapidly thawed in a water bath at 30~35℃, and then placed in TCM-199 medium containing 0.5 M sucrose for 5 min each, respectively, at 38℃. After being washed for 2~3 times, using fresh medium the oocytes were cultured in TCM-199 medium supplemented with 5% FCS at 38℃ in 5% CO2 and air. The normal morphology of fresh and vitrified-thawed oocytes were 87.1±2.1% and 54.8±2.5%, respectively. The viability rates of fresh and vitrified-thawed oocytes were 70.0±2.2% and 41.9±2.6%, respectively. Viability rates of vitrified-thawed oocytes were lower than that of fresh follicular oocytes (p<0.05). The in vitro maturation rates of fresh and vitrified oocytes were 45.1±3.6% and 28.9±4.4%, respectively. The IVF rates of fresh follicular and vitrified-thawed oocytes were 34.0±2.2% and 20.2±2.6%, respectively. The in vitro maturation and fertilization rates of vitrified-thawed oocytes were lower than those of the fresh follicular oocytes (p<0.05). A total of 350 oocytes were fixed and stained after co-incubation with spermatozoa, of which 88 had identifiable nuclear material. After IVF for 20 hrs, 25.1±3.4% of the oocytes found to have been penetrated by spermatozoas. Oocytes were fixed and stained after ICSI, and 105 oocytes contained identifiable nuclear material. After IVF and ICSI for 20 hrs, 34.3±3.4% and 59.0±2.0% of the oocytes were found to have been penetrated by spermatozoas. The developmental rates upon ICSI were significantly higher than those of the IVF method (p<0.05).
In this study, we examined the effectiveness of in vitro fertilization of porcine immature oocytes on the embryo development of blastocysts or hatched blastocysts and the number of cells according to the in vitro fertilization conditions. In the in vitro fertilization of in vitro matured porcine oocytes, there were no significant differences between treatment groups regarding fertilization rate, blastocyst rate, and embryo development of hatched blastocysts according to the storage periods of liquid sperm of 24, 48, and 72 hours. The embryo development rate of hatched blastocysts after the fertilization according to different spermatozoa concentrations (, , and cells/ml) showed the highest rate in the group with a spermatozoa concentration of cells/ml; in particular, this rate was significantly higher than that in the cells/ml group (p<0.05). The total number of blastocysts cells as well as trophectoderms (TE) that developed in each treatment group were also significantly higher in the cells/ml group than in any other groups (p<0.05). In contrast, the embryo development rate of blastocysts according to different co-incubation periods of sperm and oocyte (1, 3, and 6 hr) was high in the 6-hour group; in particular, the rate was significantly higher than that of the I-hour group (p<0.05). Furthermore, the total number of oocytes cells and TEs that developed was significantly higher in the 6-hour group than any other group (p<0.05). In this study, the most effective treatment conditions for porcine embryo development and high cell number were found to be as follows: a sperm storage period of less than 72 hours, a spermatozoa concentration of cells/ml, and a 6-hour co-incubation period for sperm and ooocyte.