In2O3 doped WO3 powders were prepared by a polymer solution route and their NO2 gas sensing properties were analyzed. The synthesized powders showed nano-sized particles with specific surface areas of 6.01~21.5 m2/g and the particle size and shape changed according to the content of In2O3. The gas sensors fabricated with the synthesized powders were tested at operating temperatures of 400~500 oC and 100~500 ppm concentrations of NO2 atmosphere. The particle size and In2O3 content affected on the initial sensor resistance in an air atmosphere. The highest sensitivity (8.57 at 500 oC), which was 1.77 higher than the sensor consisting of the pure WO3 sample, was measured in the 0.5 mol% In2O3 doping sample. In addition, the response time and recovery time were improved by the addition of In2O3.
Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped In2O3) nanoinks with nanorods at an annealing temperature of 200 oC. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (~102.3 Ω/square) and optical transmittance (~80.2%) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.
마이크론 크기를 가지는 ITO(indium tin oxide) 입자들은 인듐과 틴의 수용성 전구체들과 유기 첨가제를 분무 열분해하여 얻었다. 유기 첨가제로서는 에틸렌글리콜과 시트르산을 이용하였다. 분무 열분해 시 에틸렌글리콜과 시트르산과 같은 유기첨가제를 첨가하지 않고 얻어진 ITO 입자들은 구형이며 속이 꽉찬 형태를 가지는데 비해 유기 첨가제를 첨가하여 분무 열분해를 하면 얻어지는 ITO 입자들은 유기 첨가제의 양이 증가 할수록 껍질이 얇고 다공성이 증대된 중공 입자가 얻어진다. 유기첨가제를 첨가하지 않고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 700℃에서 두 시간 동안의 후소성과 24 시간동안의 습식 볼밀링에 의해 나노 크기의 ITO로 전환되지 않으나, 유기첨가제를 첨가하고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 700℃에서 두 시간 동안의 후소성과 24 시간 동안의 습식 볼밀링에 의해 나노 크기의 ITO로 쉽게 전환되었다. 응집된 나노 크기의 ITO의 일차 입자의 크기를 Debye-Scherrer 식에 의해 계산하였고 ITO 입자를 압축하여 만든 펠렛의 표면저항을 측정하였다.
In2O3 films were deposited by RF magnetron sputtering on a glass substrate and then the effect of post depositionannealing in nitrogen atmosphere on the structural, optical and electrical properties of the films was investigated. Afterdeposition, the annealing process was conducted for 30 minutes at 200 and 400oC. XRD pattern analysis showed that the asdeposited films were amorphous. When the annealing temperature reached 200-400oC, the intensities of the In2O3 (222) majorpeak increased and the full width at half maximum (FWHM) of the In2O3 (222) peak decreased due to the crystallization. Thefilms annealed at 400oC showed a grain size of 28nm, which was larger than that of the as deposited amorphous films. Theoptical transmittance in the visible wavelength region also increased, while the electrical sheet resistance decreased. In this study,the films annealed at 400oC showed the highest optical transmittance of 76% and also showed the lowest sheet resistance of89Ω/□. The figure of merit reached a maximum of 7.2×10−4Ω−1 for the films annealed at 400oC. The effect of the annealingon the work-function of In2O3 films was considered. The work-function obtained from annealed films at 400oC was 7.0eV. Thus,the annealed In2O3 films are an alternative to ITO films for use as transparent anodes in OLEDs.
[ WO3 ]powders were ball-milled with an alumina ball for 0-72 hours. In2O3 doped WO3 was prepared by soaking ball-milled WO3 in an InCl3 solution. The mixed powder was annealed at 700˚C for 30 min in an air atmosphere. A paste for screen-printing the thick film was prepared by mixing the WO3:In2O3 powders with α-terpinol and glycerol. In2O3 doped WO3 thick films were fabricated into a gas sensor by a screen-printing method on alumina substrates. The structural properties of the WO3:InO3 thick films were a monoclinic phase with a (002) dominant orientation. The particle size of the WO3:InO3 decreased with the ball-milling time. The sensing characteristics of the In2O3 doped WO3 were investigated by measuring the electrical resistance of each sensor in the test-box. The highest sensitivity to 5 ppm CH4 gas and 5 ppm CH3CH2CH3 gas was observed in the ball-milled WO3:InO3 gas sensors at 48 hours. The response time of WO3:In2O3 gas sensors was 7 seconds and recovery time was 9 seconds for the methane gas.
공침법을 이용하여 In2O3가 0-10 wt.% 첨가된 SnO2 계 미세 분말을 합성한 후, 스크린 인쇄법(screen printing)으로 후막형 가스센서를 제조하고 탄화수소(C3h8, C4h10) 가스에 대하여 가스 감응 특성을 조사하였다. In2O3는 SnO2의 입자 성장을 억제시키기 위하여 첨가해 주었는데, 600˚C에서 하소한 후에도 수 nm 크기의 미세한 입자를 얻을 수 있었다. 공침시 pH 값은 SnO2 의 입자 크기에 영향을 거의 미치지 않은 반면, In2O3 첨가량은 입자 크기와 미세 구조에 큰 영향을 주었다. In2O3 첨가량이 증가할수록 입자 크기는 감소하고 비표면적은 증가하였으며, 센세의 동작 온도를 약 500˚C로 하여 측정한 가스 감응 특성은 3wt.% 첨가했을 때 최대 감도를 나타내고 그 이상의 첨가량에서는 오히려 저하되었다. 3wt.%의 In2O3첨가시 SnO2의 입자 크기와 비표면적은 각각 9.5nm, 38m2/g이었다. 임피던스 측정으로부터 얻은 단일 반원의 Nyquist curve와 선형의 전류-전압(1-V)특성 곡선으로부터, In2O3를 첨가하여 수nm로 입자 크기를 억제한 SnO2 계 가스센서는 미세 입자들끼리 형성한 치밀한 응집체와 이들 간의 계면(boundary)에 의해서 가스 감응 특성이 영향을 받음을 알 수 있었다.