검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since 2010, the Odor Prevention Act has identified and regulated four types of fatty acids as substances that cause odors. Four types of fatty acids are contributors to odor pollution and are sensitive to changes in temperature and humidity. However, the current analysis method has several limitations, including dependency on the timing of sampling before and after the procedure, as well as dependency on the specific analysis method employed. The aim of this study is to assess the efficacy of the ion chromatography analysis method by utilizing ultrapure distilled water as a means to improve the current approach. Initially, the analysis system underwent a quality assessment. The results indicated a linearity (R2) of 0.99, a limit of 10 nmol/mol or lower, supporting the conclusion that it is suitable. Furthermore, the investigation focused on the substance’s tendency to change over time in ultrapure water and under alkali absorption (0.01N NaOH). At a concentration of 0.95 ng (low-concentration standard sample), the confirmed peak area values ranged from 0.0004 μg/min to 0.0010 μg/min, resulting in an injection variation of approximately ± 0.001. At 23.7 ng (high-concentration standard sample), the peak area value fluctuated between 0.008 μg/min and 0.013 μg/ min, with an average of ± 0.002. Therefore, storing the material at temperatures below 4°C for up to 3 days (72 hours) after manufacturing seemed to facilitate the optimal conditions for maintaining its stability without significant changes taking place. Finally, blank samples from the laboratory, equipment, and site were analyzed. Out of the four substances analyzed, only n-butyl acid was detected in all three background samples. It was confirmed that it represented 4% of the peak area in the 4.94 ng standard sample.
        4,000원
        3.
        2023.11 구독 인증기관·개인회원 무료
        Korea Atomic Energy Research Institute’s Post Irradiated Examination Facility safely stores spent nuclear fuel using a wet storage method to conduct research. Here, in order to remove the radioactivity released into the water, the stored water is passed through an ion exchange resin tower, and the radionuclides are exchanged with the bead-shaped ion exchange resin filled inside to lower the radioactivity concentration. At this time, because the stored water passes in one direction, clogging of the ion exchange resin occurs. If this phenomenon continues, the flow rate of the water treatment process decreases and operation efficiency decreases, so a backwashing process is necessary to re-mix the ion exchange resin and secure the flow rate again. In this study, the flow rate reduction trend according to the lifespan of the ion exchange resin and the flow rate recovery according to the backwash process operation amount were analyzed. The flow rate reduction trend of the ion exchange process was analyzed immediately after the backwashing process was started. In addition, the amount of flow recovery according to the backwash process operation amount was evaluated by the amount of waste generated during the backwash process and the number of days of operation until the backwash process was needed again. As a result, the flow rate of the ion exchange process decreased rapidly right after the backwash process until the position of the ion exchange resins was stabilized, and then stabilized. After that, it gradually decreased and reached the point where the backwash process was necessary. However, the decline trend was analyzed to be the same regardless of the lifespan of the ion exchange resin. In addition, the amount of waste generated during the operation of the backwash process was increased in the order of 400 L, 600 L, 1,100 L, 1,400 L, 3,500 L, and 4,200 L to increase the amount of operation of the backwash process. As a result, the number of days of ion exchange resin operation was 285 days, 338 days, and 342 days, was analyzed as 422 days, 322 days, and 720 days. Based on this study, it was confirmed that the flow rate reduction trend is the same regardless of the lifespan of the ion exchange resin, and as the backwash process operation increases, the number of days the ion exchange process can be operated increases, but there is a turning point where the waste treatment cost exceeds the number of days of operation.
        4.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With a rapid expansion in electric vehicles, a huge amount of the spent Li-ion batteries (LIBs) could be discharged in near future. And thus, the proper handling of the spent LIBs is essential to sustainable development in the industry of electrical vehicles. Among various approaches such as pyrometallurgy, hydrometallurgy, and direct recycling, the hydrometallurgical manner has gained interest in recycling the spent LIBs due to its high effectiveness in recycling raw materials (e.g., lithium, nickel, cobalt, and manganese). However, the hydrometallurgical process not only requires the use of large amounts of acids and water resources but also produces toxic gases and wastewater leading to environmental and economic problems, considering potential economic and environmental problems. Thus, this review aims to provide an overview of conventional and state-of-the-art hydrometallurgical processes to recover valuable metals from spent LIBs. First, we briefly introduce the basic principle and materials of LIBs. Then, we briefly introduce the operations and pros-and cons- of hydrometallurgical processes. Finally, this review proposes future research directions in hydrometallurgy, and its potential opportunities in the fundamental and practical challenges regarding its deployment going forward.
        5,700원
        10.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 기존의 CDI (capacitive deionization)를 이용해 산업 폐수에 함유되어있을 수 있는 바륨 이온 제거에 관해서 연구하였다. Feed 용액은 30 mg/L의 BaCl2 (barium chloride dihydrate) 수용액을 사용하였고, 유속은 10 mL/min 설정하였다. 흡착 조건을 1.2 V에서 3, 5, 7분으로, 탈착 조건은 각각 -1, -1.5, -2 V 및 1, 2, 3분으로 다양하게 조정하여 가장 효율이 높은 조건을 선정하는 실험을 진행하였고, 그 결과 흡착 1.2 V/7분 탈착 -1 V/1분의 조건에서 64.4%의 바륨 이온 제거효율을 나타내었다. 동일한 실험 조건으로 바륨과 같은 농도인 30 mg/L NaCl 수용액에 대하여 CDI의 제거효율과 비교 분석한 결과 흡착 1.2 V/7분 탈착 -1 V/1분의 조건에서 69.9%의 제거효율을 나타내었다.
        4,000원
        13.
        2018.11 구독 인증기관·개인회원 무료
        Saline water electrolysis is an electrochemical process to produce valued chemicals by applying electric power. Perfluorinated sulfonic acid (PFSA) ionomers have been used as polymer electrolyte membrane (PEM) materials owing to their high sodium ion selectivity and barrier properties. However, sulfonic acid groups in PFSA ionomers are chemically decomposed under a basic catholyte condition, which makes the PEM materials lose their ionic selectivity and Faraday efficiency. In this study, double layered membranes were prepared by anchoring cross-linked hydrocarbon ionomers, as a protection layer to catholyte atmosphere, into the water channels, particularly, located at around the surface of a PFSA membrane. Here, each monomer results in the identical chemical architecture and different free volume content when polymerized.
        14.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged 1.7~28.8°C with a mean of 15.0°C among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from 17.5°C (January) to 28.8°C (September) with a mean of 24.2±3.7°C, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients (N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.
        5,500원
        15.
        2016.11 구독 인증기관·개인회원 무료
        Salined water electrolysis is an electrochemical reaction to produce chlorine gas and sodium hydroxide as major products from salined water. Perfluorinated sulfonic acid (PFSA) ionomers and their derivatives have been usually used as polymeric electrolytes with high sodium ion selectivity and barrier property to chlorine and hydrogen gases. In spite of their industrial importance, there is little information on the relationship of their chemical features and electrochemical performances. In this study, membrane requirements for salined water electrolysis are described and fundamental and electrochemical characteristics of PFSA and hydrocarbon ionomer materials are compared each other. The obtained results are expected to provide membrane material design factors for low energy-consuming salined water electrolysis.
        16.
        2016.05 구독 인증기관·개인회원 무료
        본 연구에서는 분리, 흡착에 관한 물리적인 수처리 공정이 매우 중요해짐에 따라 이번 연구에서 Track-etched polycarbonate membrane이 친수성의 성질을 가지며 균일한 기공크기를 가지고 기계적 강도가 우수한 점을 활용하여 제조를 진행하였다. 이 분리막에는 표며이 하전 된 균일한 크기의 나노입자를 포함시킨 후 제거 능력에 대한 분리 특성평가를 진행하였다. 유화중합을 통해 얻어진 Polystyrene particle을 Cation/Anion으로 각각 하전시켰고 이 Latex입자들의 특성을 파악하기 위해 SEM, DSC, FT-IR 및 Zeta를 측정 진행하였다. 동시에 PC membrane이 갖는 표면 전하 및 기공크기와 입자의 표면이 갖는 전하 및 입자 크기에 따른 수투과도에 대한 조사를 진행하였다.
        17.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        물/알코올 계의 투과증발 실험을 수행하기 위해 친수성 고분자인 Poly(vinyl alcohol) (PVA)에 가교제인 Sulfosuccinic acid (SSA)와 이온교환능력을 부여하기 위하여 첨가한 Poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA)로 막을 제조하였다. 공급원액으로는 메탄올, 에탄올, 이소프로필알코올과 물을 각각 90 : 10 비율로 혼합하여 사용하였다. PVA10/SSA9/PSSA_MA90의 막 조건에서의 메탄올, 에탄올, 이소프로필알코올의 투과도는 각각 202.6, 47.8, 20.2 g/m2hr이었으며 메탄올 혼합액에서의 선택도가 가장 우수하게 나타났다. 또한 PVA10/SSA11/PSSA_MA80의 막 조건에서의 선택도는 각각 34.2, 291, 991로서 이소프로필알코올 혼합액에서 가장 좋은 결과를 나타내었다.
        4,000원
        18.
        2015.05 구독 인증기관·개인회원 무료
        물/알코올 계의 투과증발 실험을 진행하기 위해 친수성 고분자인 Poly(vinyl alcohol)(PVA)에 가교제인 Sulfosuccinic acid(SSA)와 이온교환능력을 부여하기 위하여 첨가한 Poly(4-styrene sulfonic acid-co-maleic acid)(PSSA_MA)로 막을 제조하였다. 공급액으로는 Ethanol, Iso propyl alcohol(IPA), Methanol과 물을 각각 90:10 비율로 혼합하여 사용하였다. 투과증발실험은 60℃에서 진행되었으며 실험결과 SSA의 함량이 적을수록, PSSA_MA함량이 높을수록 투과도는 증가하는 경향을 보였다. 또한 IPA, Ethanol, Methanol 순으로 높은 투과도를 나타내었으며 선택도는 그 반대의 경향을 나타내었다.
        19.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, cation and anion exchange process for performance evaluation was conducted. A pilot plant for the ultrpure water production was installed with the capacity of 25 m3/d. The various production rate and regeneration of ion exchange rate were tested to investigate the design parameters. The test resulst was applied to calculate the operating costs. Changing the flow rate of the ion exchange capacity of the reproduction reviewed the cation exchange process as opposed to the design value is 120 to 164% efficiency , whereas both anion exchange process is 82 to 124% efficiency, respectively. This results can be applied for more large scale plant if the scale up parameters are consdiered. The ion exchange capacity of the application in accordance with the design value characteristic upon application equipment is expected to be needed. In this study, the performance of cation and anion exchange resin process was evaluated with pilot plant(25m3/d). The ion exchange capacity along with space velocity and regeneration volume was evaluated. In results, the operation results was compared with design parameters.
        4,000원
        20.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 돼지의 육성기 또는 비육기에 Bio 이온수 급여에 따른 성장, 혈액분석 및 육질 특성 평가를 위하여 실시하였다. 시험구는 Bio 이온수 무 급여구 (대조구), 육성기 급여구 및 비육기 급여구로 3시험 구를 두었으며, 각 시험구 당 33두의 3원교잡종 (Landrace☓Yorkshire☓Duroc) 돼지를 배치하였으며, 총 99두를 이용하여 사양시험을 수행하였다. Bio 이온수 급여는 육성돈과 비육돈의 성장과 사료효율에 영 향을 미치지 않았지만 (P>0.05), 비육기 급여구에서 일당증체량과 A등급 출현율이 높게 나타났다. 대조구 에 비해 Bio 이온수를 급여한 처리구에서 혈액성상 분석 결과 적혈구와 백혈구의 수치가 증가하였다 (p<0.05). 일반성분, 육색, pH, 육즙감량, 가열감량 및 전단력에서 유의적인 차이는 나타나지 않았다. 지방 산 분석 결과 육성기 급여구에서 포화지방산/불포화지방산 비율이 낮게 나타났고, 불포화지방산의 함량 비 율이 가장 높게 나타났다. 또한 가열육 관능검사에서 향과 전체적인 기호도에서 높은 점수를 획득하였다.
        4,200원
        1 2