검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2023.11 구독 인증기관·개인회원 무료
        Advanced countries in the field of nuclear research and technology are currently examining the feasibility of deep geological disposal as the most appropriate method for the permanent management of high-level radioactive waste, with no intention of future retrieval. Deep geological disposal involves the placement of such waste deep underground within a stable geological formation, ensuring its permanent isolation from the human environment. To guarantee the enduring isolation and retardation of radionuclides with half-lives spanning tens of thousands to millions of years from the broader ecosystem, it is imperative to comprehend the long-term evolution of deep disposal systems, especially the role of natural barriers. These natural barriers, typically consisting of bedrock, encase the repository and undergo long-term evolutions due to tectonic movements and climate variations. For the effective disposal of high-level radioactive waste, a thorough assessment of the site’s long-term geological stability is essential. This necessitates a comprehensive understanding of its tectonic evolution and development characteristics, including susceptibility to seismic and magmatic events like earthquakes and intrusions. Furthermore, a detailed analysis of alterations in the hydrogeological and geochemical environment resulting from tectonic movements over extended time frames is required to assess the potential for the migration of radionuclides. In this paper, we have examined international evaluation methodologies employed to elucidate the predictive long-term evolution of natural barriers within disposal systems. We have extracted relevant methods from international case studies and applied a preliminary scenario illustrating the long-term evolution of the geological environment at the KURT (KAERI Underground Research Tunnel) site. Nevertheless, unlike international instances, the scarcity of quantitative data limits the depth of our interpretation. To present a dependable scenario in the future, it is imperative to develop predictive technologies aimed at comprehensively studying the geological evolution processes in the Korean peninsula, particularly within the context of radioactive waste disposal.
        2.
        2023.05 구독 인증기관·개인회원 무료
        In KAERI, a site descriptive model for stress field estimation had already been constructed by using integrated field data within KURT site scale. A sub-divided rock block domain containing major fracture zones has spatial rock mass and fault properties. The properties were decided based on the rock classification results of several borehole investigations. Modeling for maximum and minimum horizontal stress field estimation was performed and compared with the in-situ data. As a result, a depth-dependent stress ratio was adopted to obtain numerical results closer to actual in-situ data. Although the results were suitable at a relatively low depth (~500 m), there is still some deviation trend at a deep depth. This study aims to improve these modeling results by incorporating not only depth-dependent stress ratio but also changes in rock mass properties along the depth. The deep borehole of DB2 in the KURT site indicated fracture distribution corresponding to the property changes. Natural fractures are typically randomly oriented, and the fracture frequency decreases with increasing depth. The increase in P-wave velocity log data accompanies these features. A discrete fracture network (DFN) model can be used to simulate fractured rock explicitly, but DFN modeling is not feasible for site scale analysis because of its numerical efficiency. Therefore, as a preliminary model in this study, the effect of fracture distribution was considered by substituting the influence for the depth-dependent property. The properties were estimated from the fracture frequency and P-wave velocity log data. The influence of elastic modulus and density on the site stress field was dominant, with decreasing the deviation trend between modeling and in-situ data at a deep depth. Considering that the depth of the repository construction is within about 500 m, it may not be necessary to consider the change of rock properties with depth. However, it was determined that the rock property effect might need to be considered when the loading conditions change due to subsidence in the long-term evolution scenario. Continuously, this site descriptive modeling will be interdependently conducted with a representative DFN block model for deriving equivalent properties in fractured rock.
        3.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10–250 nm and 33–64 μg·L−1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.
        5,200원
        12.
        2012.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        KURT 지하수의 지구화학적 특성을 조사하기 위하여 단열충전광물과 지하수의 지구화학적 성분이 조 사되었다. KURT내의 시추공들로부터 얻어진 시추코아로부터 방해석(calcite), 일라이트(illite), 로먼타이트(laumonite), 녹니석(chlorite), 녹염석(epidote), 몬모릴로나이트(montmorillonite), 카올리나이트 (kaolinite) 및 일라이트와 스멕타이트(smectite)의 혼합층상광물 등이 감정되었다. 시추공 DB-1, YS-1, YS-4에서 채취한 대부분의 지하수는 pH 8이상의 알칼리 환경을 보여주었으며 YS-1을 제외한 두 관측공 의 전기전도도는 약 200 μS/cm를 나타냈으며 이들 시추공에서 천부지하수는 Ca-HCO3 와 Ca-Na-HCO3 유형 이였으며 심부 250m이하에서는 Na-HCO3 유형을 나타냈다. DB-1 공의 심부지하수에서 낮은 용존 산소량(DO)와 Eh값의 감소를 측정하였으며 이는 환원환경을 지시한다. KURT의 지하수 시료의 Cl- 이온 의 농도는 5 mg/L 이하이며 전 샘플링구간에서 커다란 변화 없이 일정하게 나타났다. 이러한 현상은 KURT 지역의 천부와 심부지하수가 혼합(mixing)되어 Cl-의 농도가 깊이에 따라 큰 변화가 없는 것으로 해석된다. 지하수 시료의 δ18O과 δD 분석 값은 각각 -10.4~-8.2‰과 -71.3~-55.0‰의 범위로 지하수가 순환수 기원임을 보여준다. 긴 순환경로를 거친 심부지하수의 수소, 산소 동위원소 값은 천부지하수에 비 해 감소하며 이러한 값은 일반적으로 높은 불소농도를 동반하였다. 이는 불소함량이 높은 지하수가 물-암 석 반응에 의해 생성되었음을 보여준다. KURT 지역에서 채취한 지하수의 14C를 이용한 연대측정분석에 서 지하수의 체류시간(residence time)이 약 2,000~6,000년으로 측정되었다. 이러한 체류시간은 KURT 지역의 화강암에 존재하는 지하수가 다른 유럽의 화강암지역(예, 스트리파 지역, 스웨덴)보다 상대적으 로 지하수의 연령이 오래되지 않은 것으로 측정되었다.
        4,000원
        13.
        2012.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        선진핵주기 고준위폐기물 처분시스템의 개념설계를 위하여 가상의 처분장 부지인 KURT 시설 부지의 지질조건에서 A-KRS의 입지 후보영역을 선정하였다. 부지의 모암은 한반도에 폭넓게 분포하는 중생대 화강암을 대표하는 것으로 열수변질작용을 받은 흔적이 있으며, 지표수와 지하수계는 일차적으로 지형의 영향을 받아 부지에서 남동진하여 금강으로 배출된다. 부지 내에서 확인된 단열대는 2 등급 규모로서 NS와 E-W 주향으로 우세하게 분포한다. A-KRS 입지 후보영역을 제안하기 위하여 부지 내에서 공간적으로 -500 m 심도까지 발달되는 것으로예상되는 단열대를 교차하지 않고 동시에 단열대로부터 50 m 이상의 충분한 이격거리를 갖는 조건에서 처분장 규모의 영역을 확보할 수 있는지를 분석하였다. 분석 결과, 본 부지의 중앙부에 우세하게 분포하 는 남북 방향의 주향을 갖는 단열대의 서쪽 영역의 -200 m 이하 심도에서 충분한 영역을 확보할 수 있는 것으로 확인되었다. 단열대의 분포 특성을 감안할 때 부지의 좌하단 영역이 지질학적, 수리지질학적 측면 에서 A-KRS 입지 영역으로 가장 양호한 것으로 판단된다.
        4,000원
        14.
        2012.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        한국원자력연구원의 지하처분연구시설인 KURT 부지에 가상의 심지층 처분 시설을 가정하고 안전성평 가를 수행하기 위해 필요한 지하수 유동 자료를 작성하기 위한 지하수 유동 모의가 수행되었다. 연구지역 의 전반적인 지하수 유동 특성을 고려하기 위해, 광역 규모의 지하수 유동 모의를 먼저 실시하여 국지 규 모 지하수 유동 모의에서 이용될 경계 조건을 구하고, 현장에서 확인된 단열 자료를 반영하여 국지 규모 에서의 지하수 유동계가 모의되었다. 같은 방식으로 국지 규모에서 지하수 유동에 관한 경계 조건을 뽑아 내어 KURT 부지 규모의 지하수 유동 모의에 이용하였다. 국지 규모의 지하수 유동 모의 결과로 얻어진 지하수위 분포를 통해 입자 추적(particle tracking) 모의를 수행하여 가상의 처분 부지 위치에서 지표로 흐르는 지하수의 유동 경로를 확인하고, 경로의 길이와 지하수의 시간당 유동량(discharge rate)을 구하였다. 본 연구에서 이용된 일련의 지하수 유동 모의 및 입자 추적 모의 방법은 향후 심지층 처분 시설의 안전성 평가에 필요한 자료를 작성하는데 유용하게 쓰일 것으로 기대된다.
        4,000원