The Crab nebula is widely used as a polarization angle calibrator for single-dish radio observations because of its brightness, high degree of linear polarization, and well-known polarization angle over a wide frequency range. However, the Crab nebula cannot be directly used as a polarization angle calibrator for single-dish observations with the Korean VLBI Network (KVN), because the beam size of the telescopes is smaller than the size of the nebula. To determine the polarization angle of the Crab nebula as seen by KVN, we use 3C 286, a compact polarized extragalactic radio source whose polarization angle is well-known, as a reference target. We observed both the Crab nebula and 3C 286 with the KVN from 2017 to 2021 and find that the polarization angles at the total intensity peak of the Crab nebula (equatorial coordinates (J2000) R.A. = 05h34m32.3804s and Dec = 22◦00′44.0982′′) are 154.2◦ ±0.3◦, 151.0◦ ±0.2◦, 150.0◦ ±1.0◦, and 151.3◦ ±1.1◦ at 22, 43, 86, and 94 GHz, respectively. We also find that the polarization angles at the pulsar position (RA = 05h34m31.971s and Dec = 22◦00′52.06′′) are 154.4◦ ±0.4◦, 150.7◦ ±0.4◦, and 149.0◦ ± 1.0◦ for the KVN at 22, 43, and 86 GHz. At 129 GHz, we suggest to use the values 149.0◦ ± 1.6◦ at the total intensity peak and 150.2◦ ± 2.0◦ at the pulsar position obtained with the Institute for Radio Astronomy in the Millimeter Range (IRAM) 30-meter Telescope. Based on our study, both positions within the Crab nebula can be used as polarization angle calibrators for the KVN single-dish observations.
A long standing problem in the study of Active Galactic Nuclei (AGNs) is that the observed VLBI core is in fact a blending of the actual AGN core (classically defined by the = 1 surface) and the upstream regions of the jet or optically thin flows. This blending may cause some biases in the observ- ables of the core, such as its flux density, size or brightness temperature, which may lead to misleading interpretation of the derived quantities and physics. We study the effects of such blending under the view of the Korean VLBI Network (KVN) for a sample of AGNs at 43 GHz by comparing their observed properties with observations obtained using the Very Large Baseline Array (VLBA). Our results suggest that the observed core sizes are a factor 11 larger than these of VLBA, which is similar to the factor expected by considering the different resolutions of the two facilities. We suggest the use of this factor to consider blending effects in KVN measurements. Other parameters, such as flux density or brightness temperature, seem to possess a more complicated dependence.
We present the first results of the invariant point (IVP) coordinates of the KVN Ulsan and Tamna radio telescopes. To determine the IVP coordinates in the geocentric frame (ITRF2014), a coordinate transformation method from the local frame, in which it is possible to survey using the optical instrument, to the geocentric frame was adopted. The least-square circles are fitted in three dimensions using the Gauss-Newton method to determine the azimuth and elevation axes in the local frame. The IVP in the local frame is defined as the mean value of the intersection points of the azimuth axis and the orthogonal vector between the azimuth and elevation axes. The geocentric coordinates of the IVP are determined by obtaining the seven transformation parameters between the local frame and the east-north-up (ENU) geodetic frame. The axis-offset between the azimuth and elevation axes is also estimated. To validate the results, the variation of coordinates of the GNSS station installed at KVN Ulsan was compared to the movement of the IVP coordinates over 9 months, showing good agreement in both magnitude and direction. This result will provide an important basis for geodetic and astrometric applications.
The calibration of Very Long Baseline Interferometry (VLBI) data has long been a time consuming process. The Korean VLBI Network (KVN) is a simple array consisting of three identical antennas. Because four frequencies are observed simultaneously, phase solutions can be transferred from lower frequencies to higher frequencies in order to improve phase coherence and hence sensitivity at higher frequencies. Due to the homogeneous nature of the array, the KVN is also well suited for automatic calibration. In this paper we describe the automatic calibration of single-polarisation KVN data using the KVN Pipeline and comparing the results against VLBI data that has been manually reduced. We nd that the pipelined data using phase transfer produces better results than a manually reduced dataset not using the phase transfer. Additionally we compared the pipeline results with a manually reduced phase-transferred dataset and found the results to be identical.
We present our efforts for extending the simultaneous multi-frequency receiver system of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN) to global baselines in order to measure the frequency-dependent position shifts in Active Galactic Nuclei (AGN) jets, the so called core shift effect, with an unprecedented accuracy (a few micro-arcseconds). Millimeter VLBI observations with simultaneous multi-frequency receiver systems, like those of the KVN, enable us to explore the innermost regions of AGN and high precision astrometry. Such a system is capable of locating the frequency dependent opacity changes accurately. We have conducted the feasibility test-observations with the interested partners by implementing the KVN-compatible systems. Here we describe the science case for measuring the core shift effect in the AGN jet and report progress and future plans on extending the simultaneous multi-frequency system to global baselines.
We report results of investigation of amplitude calibration for very long baseline interferome- try (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Base- line Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3, NRAO 512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510−089, which are almost unresolved for baselines in a range of 350-477 km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are se- lected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.
We have developed superconducting mixer receivers for 129 GHz VLBI observation in Korean VLBI Network (KVN). The developed mixer has a radial waveguide probe with simple transmission line L-C transformer as a tuning circuit to its 5 series-connected junctions, which can have 125 - 165 GHz as the operation radio frequency (RF). For intermediate frequency (IF) signal path a high impedance quarter-wavelength line connects the probe to one end of symmetric RF chokes. The double side band (DSB) receiver noise of the mixer was about 40 K over 4 - 6 GHz IF band, whereas we achieved the uncorrected single side band (SSB) noise temperature of about 70 K and better than 10 dB image rejection ratio in 2SB configuration with 8 - 10 GHz IF band. Insert-type receiver cartridges employing the mixers have been under commission for KVN stations.