검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.
        4,000원
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The global demand for raw lithium materials is rapidly increasing, accompanied by the demand for lithiumion batteries for next-generation mobility. The batch-type method, which selectively separates and concentrates lithium from seawater rich in reserves, could be an alternative to mining, which is limited owing to low extraction rates. Therefore, research on selectively separating and concentrating lithium using an electrodialysis technique, which is reported to have a recovery rate 100 times faster than the conventional methods, is actively being conducted. In this study, a lithium ion selective membrane is prepared using lithium lanthanum titanate, an oxide-based solid electrolyte material, to extract lithium from seawater, and a large-area membrane manufacturing process is conducted to extract a large amount of lithium per unit time. Through the developed manufacturing process, a large-area membrane with a diameter of approximately 20 mm and relative density of 96% or more is manufactured. The lithium extraction behavior from seawater is predicted by measuring the ionic conductivity of the membrane through electrochemical analysis.
        4,000원
        3.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lithium lanthanum titanium oxide (LLTO) is a promising ceramic electrolyte because of its high ionic conductivity at room temperature, low electrical conductivity, and outstanding physical properties. Several routes for the synthesis of bulk LLTO are known, in particular, solid-state synthesis and sol-gel method. However, the extremely low ionic conductivity of LLTO at grain boundaries is one of the major problems for practical applications. To diminish the grain boundary effect, the structure of LLTO is tuned to nanoscale morphology with structures of different dimensionalities (0D spheres, and 1D tubes and wires); this strategy has great potential to enhance the ion conduction by intensifying Li diffusion and minimizing the grain boundary resistance. Therefore, in this work, 0D spherical LLTO is synthesized using ultrasonic spray pyrolysis (USP). The USP method primarily yields spherical particles from the droplets generated by ultrasonic waves passed through several heating zones. LLTO is synthesized using USP, and the effects of each precursor and their mechanisms as well as synthesis parameters are analyzed and discussed to optimize the synthesis. The phase structure of the obtained materials is analyzed using X-ray diffraction, and their morphology and particle size are analyzed using field-emission scanning electron microscopy.
        4,000원
        4.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Strontium lanthanum vanadate La1-xSrxVO3 (LSVO) is a promising anode material for electrochemical devices, especially for solid oxide fuel cells, thanks to its irregular electrical conductivity. However, the known synthesis methods are incapable of producing well-dispersed LSVO nanoparticles (NPs) with homogeneous size distribution, which partly impedes the applicability of the material. Thus, a new approach to synthesize LSVO NPs with such characteristics is of paramount importance. In the present work, we successfully prepare LSVO NPs with a high dispersion degree and homogeneous size distribution via a modified co-precipitation pathway, followed by hydrogen reduction at a temperature as low as 700 oC. The prepared LSVO NPs display uniform sizes in the range of 50 ~ 100 nm and do not contain any secondary phases, according to XRD analysis. The chemical mechanism of reactions that occur to form the LSVO is thoroughly highlighted. The work functions of NPs measured by the UPS analysis are in the 2.13 ~ 3.62 eV range, making the LSVO powders promising for use in thermionic devices. An explanation of the role of Sr substitution in work function values of LSVO is also proposed.
        4,000원
        5.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using lanthanum zinc oxide (LZO) film with the ion-beam irradiation, uniform and homogeneous liquid crystal (LC) alignment was achieved. To fabricate the LZO thin film on glass substrate, solution process was conducted as a deposition method. Cross-polarized optical microscopy (POM) and the crystal rotation method reveal the state of LC alignment on the ion-beam irradiated LZO film. Between orthogonally placed polarizers, POM image showed constant black color with regular transmittance. Furthermore, collected incidence angle versus transmittance curve from the crystal rotation method revealed that the LC molecules on the ion-beam irradiated LZO film were aligned homogeneously. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were conducted to reveal the relationship between the ion-beam irradiation and the LC alignment. The ion-beam irradiation changed the LZO film surface to rougher than before by etching effect. Numerical roughness values from AFM analysis supported this phenomenon specifically. XPS analysis showed the chemical composition change due to the ion-beam irradiation by investigation of O 1s, La 3d and Zn 2p spectra. The ion-beam irradiation induced the breakage of chemical bonds in the LZO film surface and this occurred surface chemical anisotropic characteristics for uniform LC alignment.
        4,000원
        6.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ion-beam irradiated lanthanum zinc oxide (LZO) films were conducted as liquid crystal (LC) alignment layer to achieve uniform and homogeneous alignment of LC molecules. Polarized optical microscopy and the pre-tilt angle measurements revealed the alignment characteristics of LC molecules on the LZO film surface. Physical characteristics of the LZO film surface were analyzed by field emission scanning electron microscope and atomic force microscopy. The strong ion-beam irradiation on the LZO film changed surface rougher than before and induced physical anisotropic characteristics. Chemical composition of the LZO film was investigated by X-ray photoelectron spectroscopy and it was revealed that the ion-beam irradiation induced the breakage of the metal-oxide bonds. Due to this, anisotropic dipole moment which related with van der Waals force between LC molecules and alignment layer was induced. Because of this, LC molecules were anchored to the LZO film surface to achieve uniform LC alignment. Collecting the capacitance-voltage curve, residual DC of the LC cell with the LZO films was measured and it was verified that the LC cell with the LZO film had a nearly zero residual DC. Therefore, the ion-beam irradiated LZO film is an efficient method as an LC alignment layer
        4,000원
        7.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, lanthanum oxide (La2O3) dispersed molybdenum (Mo–La2O3) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of La2O3 dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of La2O3 from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the Mo–0.3La2O3 specimen sintered by pressureless sintering is approximately 99%, and La2O3 with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is 19.46 MPa·m1/2, an improvement of approximately 40% over the fracture toughness of 13.50 MPa·m1/2 on a pure-Mo specimen without La2O3, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of La2O3.
        4,000원
        10.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Rare-earth zirconates, such as lanthanum zirconates and gadolinium zirconates, have been intensively investigated due to their excellent properties of low thermal conductivity as well as chemical stability at high temperature, which can make these materials ones of the most promising candidates for next-generation thermal barrier coating applications. In this study, three compositions, lanthanum/gadolinium zirconates with reduced rare-earth contents from stoichiometric RE2Zr2O7 compositions, are fabricated via solid state reaction as well as sintering at 1600oC for 4 hrs. The phase formation, microstructure, and thermo-physical properties of three oxide ceramics are examined. In particular, each oxide ceramics exhibits composite structures between pyrochlore and fluorite phases. The potential of lanthanum/ gadolinium zirconate ceramics for TBC applications is also discussed.
        4,000원
        11.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lanthanum zirconate, La2Zr2O7, is one of the most promising candidates for next-generation thermal barrier coating (TBC) applications in high efficient gas turbines due to its low thermal conductivity and chemical stability at high temperature. In this study, bulk specimens and thermal barrier coatings are fabricated via a variety of sintering processes as well as suspension plasma spray in lanthanum zirconates with reduced rare-earth contents. The phase formation, microstructure, and thermo-physical properties of these oxide ceramics and coatings are examined. In particular, lanthanum zirconates with reduced rare-earth contents in a La2Zr2O7-4YSZ composite system exhibit a single phase of fluorite or pyrochlore after fabricated by suspension plasma spray or spark plasma sintering. The potential of lanthanum zirconate ceramics for TBC applications is also discussed.
        4,000원
        13.
        2001.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pechini방법으로 제조한 La0.8Ca0.2CrO3CLC소결체와 La0.8Ca0.2CrO3CLC-Green체를 YSZ에 적층한 후 온도의 함수로 계면에서의 미세구조와 성분이동 등의 거동을 고찰하였다. CLC-G/CLC와 CLC/YSZ계면에서의 CLC면은 반응온도에 상관없이 XRD 관찰에서 주상은 La1-x CaxCrO3그리고 CLC와 반응하지 않은 YSZ면의 결정 상은 cubic-ZrO2으로 각각 나타났다. CLC/YSZ반응 계면의 성분이동은 Zr > La>>Cr>>>Ca 순이었으며, 온도에 따른 개개 성분의 이동도 차이는 크지 않았다. CLC/YSZ계면간의 결합은 계면성분간의 과다한 성분이동 없이 현 연구의 온도전체에 걸쳐 가능한 것으로 나타났다. CLC-G/CLC간의 SEM미세구조는 결합 면을 경계로 저온에서는 결정의 입자크기 차이를 보이다가 온도가 증가할수록 균일화되는 경향을 보였다.였다. 보였다.였다.
        4,000원
        15.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        본 연구는 고상법으로 형광체를 합성하였다. 모체 물질은 La2W3O12에 활성제로 Eu3+이온을 첨가하여 활성제 조성 변화에 따른 XRD 분석과 여기 및 방출 스펙트럼 및 온도에 따른 형광 스펙트럼 분석과 수명시간을 측정하였다. La2W3O12:Eu3+의 1 mol%의 XRD 스펙트럼은 ICSD 카드 (78180)에 보고된 데이터 스펙트럼과 비교하였을 때 XRD 스펙트럼이 잘 일치함을 확인 하였다. La2W3O12형광체에 활성제로 Eu3+이온 1 mol%를 첨가한 여기 스펙트럼에서는 286 nm 근처에서 286 nm 넓은 전하전달밴드가 관찰된다. 이 전하전달밴드는 WO4그룹과 Eu3+이온의 전하 전달 밴드이며 O2--W6+,O2--Eu3+의 ligand-to-metal 전하 전달 흡수가 이루어진다. 350〜500 nm 영역에서는 Eu3+의 f-f 전이에 의한 피크가 나타났다. 여기 스펙트럼에서 Eu3+의 7F0 → 5D4,5D4,5L6,5G4,5D3,5D2전이에 해당한다. 방출 스펙트럼은 280, 395 nm로 각각 여기한 결과 Eu3+이온의 5D0 → 7F2(618nm)에서 강한 피크가 보였다. 희토류 이온이 도핑 되지 않은 La2W3O12형광체를 266 nm로 여기하여 온도에 변화 따른 방출 스펙트럼은 저온에서 상온으로 갈수록 형광의 세기가 약하게 나타났다. 온도에 따른 수명시간은 7 K(114 μs), 100 K(94 μs), 200 K(10 μs), 300 K(0.5 μs)로 나타났다.